
MATH 431 Written Homework 4 Solution Radford 02/07/09

Let R be a commutative ring with unity. Recall that R× denotes the multiplicative
group of units of R. Let a ∈ R. Throughout R = D is an integral domain.

1. Page 334, number 22: (20 points) We base our solution on the discussion of Example
1 on page 321 of the text.

D = Z[
√

5]. By the Eisenstein Criterion x2 − 5 ∈ Q[x] is irreducible. Therefore all
elements of x ∈ D have a unique expression x = m+n

√
5, where m,n ∈ Z. In particular

N : D −→ {0, 1, 2, 3, . . .} defined by

N(m + n
√

5) = |(m + n
√

5)(m + n
√

5)| = |(m + n
√

5)(m− n
√

5)||m2 − 5n2|
is multiplicative and x ∈ D× if and only if N(x) = 1.

Note that
2·2 = 4 = (1 +

√
5)(−1 +

√
5) (1)

and 2, 1 +
√

5,−1 +
√

5 are distinct. We first show that these elements are irreducible.
Observe that 4 = N(2) = N(1+

√
5) = N(−1+

√
5) = 4. Since N( ) is multiplicative,

to show that 2, 1 +
√

5,−1 +
√

5 are irreducible we need only show that N(x) = 2 is not
possible for x = m + n

√
2 ∈ D (5).

Suppose that N(x) = 2; that is m2 − 5n2 = ±2. Then m,n are even or m,n are
odd. In the first case m = 2` and n = 2k, for some k, ` ∈ Z. Therefore m2 − 5n2 =
4k2− 5(4`2) = 4(k2− 5`2) which does not divide ±2. In the second case m = 2k +1 and
n = 2` + 1 for some k, ` ∈ Z. But then

m2 − 5n2 = (4k2 + 4k + 1)− 5(4`2 + 4` + 1) = 4(k2 + k − `2 − `− 1)

does not divide ±2. Therefore N(x) = 2 is not possible (5). We have shown that
2, 1 +

√
5,−1 +

√
5 are irreducible.

Now we show that these elements are not prime. Suppose that 2 is prime. Then
from (1) we conclude that 2 divides 1 +

√
5 or −1 +

√
5; that is 2(m + n

√
5) is 1 +

√
5

or −1 +
√

5 for some m,n ∈ Z. But 2m = ±1 is not possible. Therefore 2 is not prime
(5).

Suppose that 1 +
√

5 is prime. Then from (1) we see that 2 = (1 +
√

5)(m + n
√

5) =
(m + 5n) + (m + n)

√
5, for some m,n ∈ Z. But then m + 5n = 2 and m + n = 0 from

which we conclude that m = −n and 4n = 2, a contradiction. Therefore 1 +
√

5 is not
prime (5).

2. Page 334, number 32: (20 points) The hypothesis is equivalent to every descending
chain of ideals of D must terminate (stabilize).

Let a ∈ D be a non-zero element. Then the descending chain of ideals

Ra ⊇ Ra2 ⊇ Ra3 ⊇ Ra4 ⊇

1



must stabilize (5). Therefore Ran = Ran+1 for some n ≥ 1 (5). Since an = 1an ∈ Ran =
Ran+1 there is an r ∈ D such that 1an = an = ran+1 = raan (5). Now an 6= 0 since
a 6= 0. By cancellation 1 = ra. We have shown that a ∈ D× (5). Therefore D is a field.

3. Page 335, number 36: (20 points) Set D = Z[
√

2]. Since x2− 2 ∈ Q[x] is irreducible
by the Eisenstein Criterion, all a ∈ D have a unique representation a = m + n

√
2,

where m,n ∈ Z. Since (1 +
√

2)(−1 +
√

2) = −12 + 2 = 1 it follows that 1 +
√

2 has a
multiplicative inverse in D which is −1 +

√
2 (7).

We show that 1 +
√

2 has infinite order. Suppose that (1 +
√

2)n = k + `
√

2, where
k, ` > 0. This is the case when n = 1. Then

(1 +
√

2)n+1 = (1 +
√

2)(1 +
√

2)n = (1 +
√

2)(k + `
√

2) = (k + 2`) + (k + `)
√

2

which shows that (1 +
√

2)n+1 = k′ + `′
√

2, where k′, `′ > 0 (5). Thus (1 +
√

2)n 6= 1 =
1 + 0

√
2 for n > 0 by uniqueness of expression (5) since the coefficient of

√
2 on the left

is never 0. Thus 1 +
√

2 has infinite order (5).

4. Page 349, number 22: (20 points) Let {v1, . . . , vn} be a basis for V . By Exercise 4
every v ∈ V has a unique expansion v = a1v1 + · · · + anvn, where a1, . . . , an ∈ Zp (5).
Therefore there is a bijection from V to the set {(a1, . . . , an) | a1, . . . , an ∈ Zp} given by

a1v1 + · · · anvn 7→ (a1, . . . , an). (5)

The latter has
p· · · · ·p︸ ︷︷ ︸
n−factors

= pn (5)

elements. We have shown |V | = pn (5).

5. Page 349, number 24: (20 points) We first show that U∩W is a subspace of V .
Since U,W are additive subgroups of V it follows that U∩W is an additive subgroup
of V from group theory (5). Let a ∈ F and v ∈ U∩W . Then v ∈ U,W . As these are
subspaces of V we conclude rv ∈ U,W (5). Therefore rv ∈ U∩W . We have shown that
U∩W is a subspace of V .

Next we show that U + W is a subspace of V . Since V ia an additive abelian group,
all subgroups of V are normal. It follows that U + W is an additive subgroup of V
from group theory (5). Let v ∈ U + W and r ∈ F . Then v = u + w for some u ∈ U
and w ∈ W . Since U,W are subspaces of V it follows that ru ∈ U and rw ∈ W (5).
Therefore r(u+w) = ru+ rw ∈ U +W . We have shown that U +W is a subspace of V .
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