1. Page 388, number 20: (20 points) \(g(x) \in \mathbb{Z}_p[x] \) is irreducible and divides \(x^n - x \) in \(\mathbb{Z}_p[x] \). Let \(F \) be a splitting field of \(x^n - x \) over \(\mathbb{Z}_p \). Then \(|F| = p^n \) and \(x^n - x = \prod_{a \in F} (x - a) \); see the proof of Theorem 22.1 (4). Since \(g(x) \) divides \(x^n - x \) in \(\mathbb{Z}_p[x] \) it follows that \(g(a) = 0 \) for some \(a \in F \) (4). Now \(\deg g(x) = [\mathbb{Z}_p[a] : \mathbb{Z}_p] \) by work in class (4). From the sequence of field extensions \(\mathbb{Z}_p \subseteq \mathbb{Z}_p[a] \subseteq F \) we see that \([\mathbb{Z}_p[a] : \mathbb{Z}_p] \) divides \([F : \mathbb{Z}_p] \) by Theorem 21.5 (4). Thus \(\deg g(x) \) divides \([F : \mathbb{Z}_p] = n \) (4).

2. Page 389, number 24: (20 points) Write \(p(x) = \alpha p_1(x) \cdots p_r(x) \), where \(p_i(x) \in \mathbb{Z}_p[x] \) is monic irreducible for all \(1 \leq i \leq r \) and \(\alpha \in \mathbb{Z}_p \) is not zero (3). Then \(p_1(x), \ldots, p_r(x) \) are distinct since \(p(x) \) has no multiple zeros in one (hence all) of its splitting fields (3).

Let \(F \) be a splitting field of \(p(x) \) over \(\mathbb{Z}_p \) (3). Then \(F \) is finite-dimensional vector space over \(\mathbb{Z}_p \). Thus \(|F| = p^n \) or some positive integer \(n \) and \(x^n - x = \prod_{a \in F} (x - a) \) (3).

Let \(1 \leq i \leq r \). Since \(p(x) \) splits into linear factors over \(F \) it follows that \(p_i(a) = 0 \) for some \(a \in F \) by the corollary to Theorem 18.3 and Corollary 2 to Theorem 16.2 (2). Since \(a \) is a root of \(x^n - x \) also (2), \(p_i(x) = \text{irr}(a, \mathbb{Z}) \) and thus divides \(x^n - x \) in \(\mathbb{Z}_p[x] \) by Theorem 21.3 (2). Since \(p_1(x), \ldots, p_r(x) \) are relatively prime and each divides \(x^n - x \) in \(\mathbb{Z}_p[x] \) the product \(p(x) \) does as well (2).

3. Page 389, number 30: (20 points) Suppose that \(F \) is a finite field and set \(p(x) = \prod_{a \in F} (x - a) + 1 \). Then \(p(a) = 1 \) for all \(a \in F \) and \(p(x) \) has positive degree. Therefore \(F \) is not algebraically closed.

4. Page 395, number 10: (20 points) Suppose that \(40^\circ \) is constructible. Then \(a = \cos 40^\circ \) is a constructible number. Now

\[-\frac{1}{2} = \cos 120^\circ = \cos 3\cdot 40^\circ = 4 \cos^3 40^\circ - 3 \cos 40^\circ = 4a^3 - 3a\]

implies that \(a \) is a root of \(p(x) = 8x^3 - 6x + 1 \in \mathbb{Q}[x] \) (8).

We show that \(p(x) \in \mathbb{Q}[x] \) is irreducible. Suppose to the contrary that \(p(x) \in \mathbb{Q}[x] \) is reducible. Then \(p(r) = 0 \) for some \(r \in \mathbb{Q} \) by Theorem 17.1. Set \(s = 2r + 1 \). Then \(s \in \mathbb{Q} \) and \(r = \frac{1}{2}(s - 1) \). Therefore

\[0 = 8r^3 - 6r + 1 = (s - 1)^3 - 3(s - 1) + 1 = (s^3 - 3s^2 + 3s - 1) + (-3s + 3) + 1 = s^3 - 3s^2 + 3\]

which implies that \(x^3 - 3x^2 + 3 \) has a root in \(\mathbb{Q} \) (7). But this polynomial is irreducible in \(\mathbb{Q}[x] \) by the Eisenstein Criterion with \(p = 3 \), contradiction. We have shown that \(p(x) \in \mathbb{Q}[x] \) is irreducible; thus

\[\text{irr}(a, \mathbb{Q}) = x^3 - \frac{3}{4}x + \frac{1}{8}\]

which means \(\text{Deg} a = 3 \neq 2^\ell \) for all \(\ell \geq 0 \). Therefore \(a \) is not constructible number (7).
5. Page 396, number 20: \textbf{(20 points)} Suppose that the cube could be quadrupled. Then there an constructible number a which satisfies $a^3 = 4$, or equivalently is a root of $x^3 - 4$. We will show that $\deg a = 3$ and thus is not constructible, by showing that $x^3 - 4 \in \mathbb{Q}[x]$ is irreducible.

Suppose that $x^3 - 4 \in \mathbb{Q}[x]$ is reducible. Then the polynomial has a root $r \in \mathbb{Q}$ (4). Write $r = n/m$, where $n, m \in \mathbb{Z}$ and are relatively prime. Then $r^3 = 4$, or equivalently $n^3 = 4m^3$. Therefore $2|n^3$; hence $2|n$ since 2 is a prime integer (4). Thus $n = 2\ell$ for some positive integer ℓ. Therefore $8\ell^3 = 4m^3$, or $2\ell^3 = m^3$. Thus $2|m^3$, and hence $2|m$, since 2 is prime (4). This contradicts the fact that n and m are relatively prime. Therefore $x^4 - 4 \in \mathbb{Q}[x]$ is irreducible which means $\text{irr}(a, \mathbb{Q}) = x^3 - 4$ (4). Thus $\deg a = 3$ and consequently a is not constructible (4).