1. Page 415, number 36: (30 points) \(H \) is a normal subgroup of a finite group \(G \) and \(|H| = p^\ell \) for some positive prime \(p \) and \(\ell \geq 0 \). We may assume that \(\ell > 0 \). By Sylow’s Second Theorem \(H \subseteq K \) for some Sylow \(p \)-subgroup \(K \) of \(G \) (10). Any Sylow \(p \)-subgroup of \(G \) has the form \(gKg^{-1} \) for some \(g \in G \) by Sylow’s Third Theorem (10). Thus \(H = gHg^{-1} \subseteq gKg^{-1} \) since \(H \) is normal and \(H \subseteq K \) (10). We have shown that \(H \) is contained in every Sylow \(p \)-subgroup of \(G \).

2. Page 415, number 40: (30 points) If \(|G| = 1 \) then \(|G| = p^0 \) is a power of \(p \). Suppose \(|G| > 1 \) and \(q \) is a positive prime divisor of \(|G| \) (7). Then \(G \) has an element \(a \) of order \(q \) by Cauchy’s Theorem (7). But the order of \(a \) is \(p^\ell \) for some \(\ell \geq 0 \) by assumption. Therefore \(q = p^\ell \) which implies \(q = p \) (8). Since \(p \) is the only positive prime which divides \(|G| \) it follows that \(|G| \) is a power of \(p \) (8).

3. Page 415, number 44: (40 points) Suppose \(|G| = 45 = 3^2 \cdot 5 \). Let \(H \) be a Sylow 3-subgroup of \(G \). Then \(|H| = 3^2 \) and is thus abelian by the corollary to Theorem 24.4. Let \(K \) be a Sylow 5-subgroup of \(G \). Then \(|K| = 5 \) and is thus abelian since it is cyclic (6).

Let \(n_p \) be the number of Sylow \(p \)-subgroups of \(G \) for \(p = 3, 5 \). Since \(n_5|3^2 \) and \(n_3 = 1 + 5\ell \) for some \(\ell \geq 0 \) it follows that \(n_5 = 1 \). Likewise \(n_3|5 \) and \(n_3 = 1 + 3\ell \) for some \(\ell \geq 0 \) which implies \(n_3 = 1 \). Thus \(H, K \) are normal subgroups of \(G \) by the corollary to Theorem 24.5 (6).

Now \(H \cap K \subseteq H, K \) implies \(|H \cap K| \) divides \(|H| = 9 \) and \(|K| = 5 \) by Lagrange’s Theorem. Therefore \(|H \cap K| = 1 \) which means \(H \cap K = (e) \). Since \(|HK| = |H||K|/|H \cap K| = |H||K| = |G| \) it follows that \(HK = G \) (6). Since \(H, K \) are normal and \(H \cap K = (e) \) recall that \(hk = kh \) by \(\square \) on page 411 of the text (6).

We show that \(G \) is abelian. Let \(g, g' \in G \). Then \(g = hk \) and \(g' = h'k' \) for some \(h, h' \in H \) and \(k, k' \in G \). Therefore

\[
gg' = hh'k'k = hh'kk' = hh'k'k = h'hk'k = h'hk'hk = g'g
\]

which shows that \(G \) is abelian (6).

Since \(G \) is abelian \(G \simeq \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \) (5) or \(G \simeq \mathbb{Z}_{3^2} \times \mathbb{Z}_5 \) (5) by the Fundamental Theorem for Finite Abelian Groups.