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0. Introduction

Hopf algebras are named after Heinz Hopf who

discovered them the last century in the context

of algebraic topology [Hopf 1941]. They

arise in many areas of mathematics. Group

algebras, enveloping algebras of Lie algebras,

and quantum groups are examples of Hopf al-

gebras. Certain Hopf algebras give rise to in-

variants of knots and links. We will describe

Hopf algebras, discuss basic examples and fun-

damental results, and trace the development of

the theory.

The Hopf algebras we discuss here are tech-

nically different from those coming from alge-

braic topology. See the very interesting dis-

cussion in [Haz 2008].

Objects are vector spaces over a field k and

maps are k-linear. ⊗ = ⊗k. “f-d” = finite-

dimensional.



1. A Basic Example and Definitions

G is a group and A = kG is the group algebra of

G over k. Let g, h ∈ G. The algebra structure:

kG⊗ kG m−→ kG m(g ⊗ h) = gh

k
η−→ kG η(1k) = e = 1kG

The coalgebra structure:

kG ∆−→ kG⊗ kG ∆(g) = g ⊗ g

kG ε−→ k ε(g) = 1k

The map which accounts for inverses:

kG S−→ kG S(g) = g−1



Observe that

∆(gh) = gh⊗ gh = (g⊗ g)(h⊗ h) = ∆(g)∆(h),

ε(gh) = 1k = 1k1k = ε(g)ε(h),

S(gh) = (gh)−1 = h−1g−1 = S(h)S(g),

gS(g) = gg−1 = 1kG = 1k1kG = ε(g)1kG,

and

S(g)g = g−1g = 1kG = ε(g)1kG.

In particular ∆, ε are algebra maps and S is

determined by

gS(g) = ε(g)1kG = S(g)g.

We generalize the system (kG, m, η,∆, ε, S).



A Hopf algebra over k is a tuple (A, m, η,∆, ε, S),
where (A, m, η) is an algebra over k:

A⊗A
m−→ A m(a⊗ b) = ab

k
η−→ A η(1k) = 1A

(A,∆, ε) is a coalgebra over k:

A
∆−→ A⊗A ∆(a) = a(1) ⊗ a(2)

A
ε−→ k

and A
S−→ A is an ”antipode” where certain

axioms are satisfied.

Comments: ∆(a) ∈ A ⊗ A is usually a sum of
tensors; thus ∆(a) = a(1)⊗a(2) is a notation,
called the Heyneman-Sweedler notation. ∆ is
called the coproduct and ε the counit.

The axioms for a Hopf algebra:



(A, m, η) is an (associative) algebra:

(ab)c = a(bc), 1a = a = a1

(A,∆, ε) is a (coassociative) coalgebra:

a(1)(1) ⊗ a(1)(2) ⊗ a(2) = a(1) ⊗ a(2)(1) ⊗ a(2)(2),

ε(a(1))a(2) = a = a(1)ε(a(2))

∆ is an algebra map:

∆(ab) = a(1)b(1) ⊗ a(2)b(2), ∆(1) = 1⊗ 1,

ε is an algebra map:

ε(ab) = ε(a)ε(b), ε(1) = 1, and

a(1)S(a(2)) = ε(a)1 = S(a(1))a(2))

for all a, b ∈ A. From now on A denotes a Hopf
algebra over k.



2. Basic Properties and More Definitions

1. A has a unique antipode and

S(ab) = S(b)S(a), S(1) = 1. Also

∆(S(a)) = S(a(2))⊗ S(a(1)), ε(S(a)) = ε(a).

2. a ∈ A is cocommutative if a(1) ⊗ a(2) =
a(2) ⊗ a(1); A is cocommutative if all a ∈ A

are. kG is cocommutative. A is commutative
if ab = ba for all a, b ∈ A. kG is commutative
iff G is.

3. a ∈ A is grouplike if ∆(a) = a ⊗ a and
ε(a) = 1. 1 ∈ A is grouplike. The set G(A) of
grouplike elements of A is linearly independent
(coalgebra fact). G(kG) = G.

4. G(A) is a group under multiplication and
S(g) = g−1 for g ∈ G(A). Thus if A is f-d then
G(A) is a finite group.



5. Let M, N be left A-modules (regard A as an
algebra). Then M⊗N is a left A-module where
a·(m⊗ n) = a(1)·m⊗ a(2)·n. For g ∈ G ⊆ kG
note g·(m⊗ n) = g·m⊗ g·n.

6. If S is bijective then (A, mop, η,∆, ε, S−1),
(A, m, η,∆cop, ε, S−1) are Hopf algebras, where
mop(a ⊗ b) = ba and ∆cop(a) = a(2) ⊗ a(1).
(A, mop, η,∆cop, ε, S) is a Hopf algebra.

7. If A is f-d then S is bijective.

8. If (A, m, η,∆, ε, S) is f-d (A∗,∆∗, ε∗, m∗, η∗, S∗)
is a f-d Hopf algebra over k.

9. Let C be a (coassociative) coalgebra. Every
f-d subspace of C generates a f-d subcoalgebra.
Thus A has simple subcoalgebras, and all are
f-d. k1, more generally kg for g ∈ G(A), is a
simple subcoalgebra of A.

The reader is referred to any basic text on Hopf
algebras: [Swe 1967], [Abe 1980], [Mont 1993],
[D−N−Rai 2001].



3. The Enveloping Algebra

L is a Lie algebra over k. The enveloping al-

gebra U(L) is a cocommutative Hopf algebra

over k where

∆(`) = 1⊗ ` + `⊗ 1, (1)

ε(`) = 0, and S(`) = −` for ` ∈ L. An ` ∈ A

such that (1) holds is primitive. The set of

primitives P (A) of A is a subspace and a a Lie

algebra under associative bracket. A = U(L)

is pointed irreducible meaning k1 is the only

simple subcoalgebra of A.

Assume k has characteristic 0. Then P (U(L))) =

L and the Milnor-Moore Theorem [Mil−Mo 1965]

characterizes the finitely generated graded pointed

irreducible Hopf algebras over k as the envelop-

ing algebras of f-d Lie algebras over k. See

[Haz 2008] also.



4. Affine Algebraic Groups

Coalgebras C over k provide many examples of

algebras. The linear dual C∗ = Homk(C, k) is

an algebra over k with convolution product:

1C∗ = ε and ab(c) = a(c(1))b(c(2))

for all a, b ∈ C∗ and c ∈ C.

Example 1 C has basis c0, c1, c2, . . . and

∆(cn) =
∑n

`=0 cn−` ⊗ c`, ε(cn) = δn,0.

As (ab)(cn) =
n∑

`=0

a(cn−`)b(c`),

C∗ ' k[[x]], a 7→
∞∑

n=0

a(cn)x
n.

Example 1 suggests coalgebra connections with

combinatorics [Rom−Rota 1978], [Rota 1978].



Example 2 Let n ≥ 1 and C(n, k) have basis

xi,j, 1 ≤ i, j ≤ n and

∆(xi,j) =
∑n

`=1 xi,` ⊗ x`,j, ε(xi,j) = δi,j.

As (ab)(xi,j) =
n∑

`=1

a(xi,`)b(x`,j),

C∗ ' M(n, k), a 7→ (ai,j), where ai,j = a(xi,j).

We now continue. B = S(C(n, k)) is the free

commutative k-algebra on C(n, k). Now let

∆ : B −→ B ⊗ B and ε : B −→ k be the al-

gebra maps determined on xi,j as in Example

2. Algk(B, k) is closed under the convolution

product, contains ε, and

Algk(B, k) ' M(n, k), α 7→ (α(xi,j)),

as (multiplicative) monoids.

Det =
∑

σ∈Sn

x1,σ(1) · · ·xn,σ(n) ∈ G(B),



A = B[Det−1] is a Hopf algebra, Algk(A, k) is

a group under convolution, and

Algk(A, k) ' GL(n, k) as groups.

An affine algebraic group is a pair (G, A), where

G is a group, A is a certain commutative Hopf

algebra over k, and G ' Algk(A, k). We write

A = A(G). A determines (G, A).



5. The General Theory of Hopf Algebras

Begins

With Sweedler’s book [Swe 1969b] the study

of Hopf algebras in general was just underway.

Previously Hopf algebras of interest were either

cocommutative or commutative. kG, U(L) are

cocommutative, A(G) is commutative. U(L)

and A(G) are precursors of quantum groups.

Efforts were made to prove know results, or

discover new ones, for affine groups using Hopf

algebra methods, see [Swe 1969a], [Sul 1971],

[Sul 1973], [Tak 1972a], [Tak 1972b]. The study

of cocommutative Hopf algebras was pursued

[Swe 1967], [New−Swe 1979].

Connections were made with many aspects of

algebra. Hopf algebras were seen as rings which

were interesting in their own right. There was

an effort to generalize results about the group



algebras of finite groups to f-d Hopf algebras.

For these generalizations would hold for both

these group algebras and restricted enveloping

algebras.

Hopf algebras were constructed as vector spaces

on certian diagrams which can be combined

(which gives rise to a product) and decom-

posed (which gives rise to a coproduct). See

[Gross−Lar 1989], [Connes−Krei 2001].

The antipode was scrutinized since it is such

an important part of the structure of a Hopf

algebra. In [Tak 1971] a Hopf algebra is given

where S is not bijective. If A is commutative

or cocommutative S2 = IdA and therefore S is

bijective.

In [Taft 1971] f-d examples Tn, where n ≥ 1,

are given where S2 has finite order n. T2 is

Sweedler’s example. DimTn = n2.



Example 3 Let n ≥ 1 and suppose q ∈ k is a

primitive nth root of unity. Tn is generated as

an algebra by a, x subject to the relations

xa = qax , xn = 0, and an = 1

and the coalgebra structure is determined by

∆(a) = a⊗ a and ∆(x) = 1⊗ x + x⊗ a. (2)

Necessarily ε(a) = 1, thus A ∈ G(Tn), and

ε(x) = 0. An x ∈ A such that (2) is satisfied

for some a ∈ G(A) is skew-primitive. Compare

with (1). When a = 1 note x is primitive. The

boxed expressions are basic types of defining

relations for the quantized enveloping algebras

(here q is not a root of unity).

In 1975 Kaplansky postulated 10 conjectures

[Kap 1975] about Hopf algebras some of which

are open. They have focused the research of

many.



6. Some Fundamental Results for F-D

Hopf Algebras

G is a finite group. Λ =
∑

h∈G

h satisfies

gΛ =
∑

h∈G

gh = Λ = 1kΛ = ε(g)Λ

for g ∈ G and

ε(Λ) =
∑

h∈G

ε(h) =
∑

h∈G

1k = |G|1k.

Maschke’s Theorem can be formulated: All

left kG-modules are completely reducible if and

only if ε(Λ) 6= 0.

Λ ∈ A is a left (resp. right) integral for A if

aΛ = ε(a)Λ (resp. Λa = ε(a)Λ ) for all a ∈ A.

There is non-zero (left) integral Λ for A iff

A is f-d [Swe 1969c] in which case any (left)

integral for A is a scalar multiple of Λ.



Now suppose A is f-d. All left A-modules are
completely reducible if and only if ε(Λ) 6= (0)
[Lar−Swe 1969c].

There is a g ∈ G(A) which relates left and right
integrals for A and an α ∈ G(A∗) which does
the same for A∗. Let A

σg−→ A, A∗ σα−→ A∗
denote conjugation by g, α respectively. Then
σg, σ∗α commute and

S4 = σg◦σ∗α .

Thus S has finite order. See [Rad 1976].

There is a Hopf algebra analog of Lagrange’s
Theorem for a finite group G. Let H be a
subgroup of G. Then |H| divides |G| if and
only if kG is a free left kH-module. A most
sought after result was finally established in
[Nic−Zel 1989]:

Theorem 1 A f-d Hopf algebra is a free (left)
module over its sub-Hopf algebras.



The proof, which is quite subtle, is based on
the notion of relative Hopf module, a general-
ization of Hopf module.

Now let A be any Hopf algebra over k. Then a
left A-Hopf module is a triple (M, µ, ρ), where
A⊗M

µ−→ M is a left A-module, M
ρ−→ A⊗M

is a left A-comodule which satisfy a certain
compatibility.

All left A-Hopf modules are free and have a
special basis [Swe 1969c]. This result is one
of the most important in the theory of Hopf
algebras. In particular it accounts for basic
results about integrals.

Suppose A is semisimple (as an algebra). Then
A is f-d [Swe 1969c]. If the characteristic of k
is 0 then A∗ is also semisimple and S2 = IdA

[Lar−Rad 1988a, 1988b]. If the characteristic
is positive and A, A∗ are semisimple S2 = IdA

[Eting−Gel 1998].



7. The Advent of Quantum Groups - An

Explosion of Activity

Drinfel’d’s paper [Drinfel′d 2007] presented at

the ICM held at Berkeley, CA, in 1986 de-

scribed new classes of non-commutative, non-

commutative Hopf algebras, which we refer to

as quantum groups, derived from commuta-

tive or cocommutative ones through ”quan-

tization”. His paper pointed to connections

of quantum groups with physics, algebra, non-

commutative geometry, representation theory,

and topology.

For connections with representation theory see

[Lusztig 1993] and [Char−Press 1994]. For

connections with non-commutative geometry

see [Manin 1988, 1991], and for connections

with invariants of knots, links, and 3-manifolds

see [Kassel−Rosso−Tur1997].



There are general text books on quantum groups.

These include [Char−Press 1994], [Kassel 1995],

and [Majid 1995].

Some important consequences for Hopf alge-

bras were the introduction of the quantized

enveloping algebras, of quasitriangular Hopf al-

gebras, an important example of which is the

Drinfel’d double, and later introduction of the

small quantum groups of Lusztig. The paper

[Majid 1990] is a good entry point for Hopf

algebraists to make first foray into quantum

groups.

There was a flurry of activity to find quantiza-

tions of Hopf algebras associated with certain

affine groups. Sometime later quasitriangular

Hopf algebras were seen to account for regular

isotopy invariants of oriented knots and links

in a very concrete manner [Kauff−Rad 2001].



For us a quasitriangular Hopf algebra over k is

a pair (A, R), where A is a Hopf algebra over

k, and R ∈ A⊗A satisfies certain axioms which

guarantee that it satisfies algebraists’ Yang–

Baxter equation. When A is f-d the Drinfel’d

double (D(A), R) can be constructed. Both

A, A∗ cop are subHopf algebras of D(A) and mul-

tiplication A∗ ⊗ A −→ D(A) is a linear isomor-

phism.

Thus f-d quasitriangular Hopf algebras abound.

The invariants they produce are almost a to-

tal mystery. Concerning the double, there is a

rather mysterious connection comes to light in

[Kauff−Rad 1993] between the formula for S4

and when a certain 3-manifold invariant arises

from D(A), R). The invariant was first de-

scribed in [Henn 1996].

When A is f-d the category of left D(A)-modules

is equivalent to the Yetter-Drinfel’d category



AYD [Yetter 1990], [Majid 1991]. Objects are

triples (M, µ, ρ), where A⊗M
µ−→ M and M

ρ−→
A⊗M are left A-module and left A-comodule

structures on M respectively satisfying a rather

complicated compatibility condition reflecting

the commutation relation for multiplication in

D(A).

This condition is quite different from the Hopf

module compatibility condition. Certain Hopf

algebras in this category are important for the

classification of f-d Hopf algebras when A = kG
is the group algebra of a finite abelian group.



8. Classification of Pointed Hopf Algebras

Let A be any Hopf algebra. A0 denotes the

sum of all the simple subcoalgebras of A and

A is pointed if these are 1-dimensional. In this

case A0 = kG(A) and is a subHopf algebra of

A. The quantized enveloping algebras, and the

small quantum groups of Lusztig, are pointed.

Suppose A0 is a subHopf algebra of A. There

is a graded pointed irreducible Hopf algebra

gr(A) with gr(A)0 = gr(A)(0) = A0. We now

outline the strategy of [Andrus−Schn 2002]

for determining the structure of A.

Let gr(A)
π−→ A0 be the projection. The right

covariants R = gr(A)co π form a graded pointed

irreducible Hopf algebra in the category A0
YD

and there is an isomorphism of gr(A) ' R×A0

with a canonical biproduct [Rad 1985].



For a discussion of Hopf algebras in A0
YD and

related categories see [Majid 1992]. We have

R(0) = k1 and R(1) = P (R). The Nichols

algebra associated with V = P (R) is B(V ), the

subalgebra of R generated by V . We note B(V )

is analogous the enveloping algebra of a Lie

algebra. Steps for classification of A:

(1) Determine the structure of B(V );

(2) Determine all Hopf algebras B over k such

that gr(B) ' B(V )×A0;

(3) Determine whether or not B(V ) = R (in

which case A = B for some B of (2)).

Let B be a Hopf algebra over k. Then for

any object V of BYD there is a graded pointed

irreducible Hopf algebra B(V ) in BYD which



is determined by B(V )(1) = V and V gen-

erates B(V ) as an algebra. These are the

Nichols algebras. They have been described in

many ways in important cases which have been

studied in [Lusztig 1993], [Rosso 1995, 1998],

[Heck 2004]. Basic results about them are

nontrivial.

Andruskiewitsch and Schneider have used them

in classifying f-d pointed Hopf algebras when

k is algebraically closed of characteristic 0 and

G(A) is commutative with mild restrictions on

|G(A)| [Andrus−Schn 2010]. The similarities

between these Hopf algebras and Lustig’s small

quantum groups are striking.



References

[Abe 1980] Abe, Eiichi. Hopf algebras. Cambridge Tracts in Math-
ematics, 74. Cambridge University Press, Cambridge-New York,
1980. xii+284 pp.

[Andrus-Fan-Gra-Ven 2010] N. Andruskiewitsch, F. Fantino, M.
Graa, L. Vendramin. Pointed Hopf algebras over the sporadic
groups. math.QA arXiv:1001.1108

[Andrus-Nat 2001] Andruskiewitsch, Nicols; Natale, Sonia. Count-
ing arguments for Hopf algebras of low dimension. Tsukuba J.
Math. 25 (2001), no. 1, 187–201.

[Andrus-Schn 2002] Andruskiewitsch, Nicols; Schneider, Hans-
Jürgen. Pointed Hopf algebras. New directions in Hopf algebras,
1–68, Math. Sci. Res. Inst. Publ., 43, Cambridge Univ. Press,
Cambridge, 2002.

[Andrus-Schn 2010] N. Andruskiewitsch; Hans-Jürgen Schneider.
On the classification of finite-dimensional pointed Hopf algebras.
math.QA/0502157

[Char-Press 1994] Chari, Vyjayanthi; Pressley, Andrew. A guide
to quantum groups. Cambridge University Press, Cambridge, 1994.
xvi+651 pp.

[Bea-Dasc 2004] Beattie, M.; Dascalescu, S. Hopf algebras of
dimension 14. J. London Math. Soc. (2) 69 (2004), no. 1,
65–78.

[Connes-Krei 2001] Connes, A.; Kreimer, D. From local pertur-
bation theory to Hopf- and Lie-algebras of Feynman graphs. Math-
ematical physics in mathematics and physics (Siena, 2000), 105–
114, Fields Inst. Commun., 30, Amer. Math. Soc., Providence,
RI, 2001.



[D-N-Rai 2001] Dascalescu, Sorin; Nastasescu, Constantin; Ra-
ianu, Serban. Hopf algebras. An introduction. Monographs and
Textbooks in Pure and Applied Mathematics, 235. Marcel Dekker,
Inc., New York, 2001. x+401 pp.

[Drinfel’d 1987] Drinfel’d, V. G. Quantum groups. Proceedings of
the International Congress of Mathematicians, Vol. 1, 2 (Berkeley,
Calif., 1986), 798–820, Amer. Math. Soc., Providence, RI, 1987.

[Gross-Lar 1989] Grossman, Robert; Larson, Richard G. Hopf-
algebraic structure of families of trees. J. Algebra 126 (1989), no.
1, 184–210.

[Haz 2008] M. Hazewinkel. Niceness Theorems (2008) arXiv:0810.5691

[Heck 2004] I. Heckenberger. Finite dimensional rank 2 Nichols
algebras of diagonal type II: Classification. math.QA/0404008

[Heck-Sch 2008] I. Heckenberger; H. -J. Schneider. Root sys-
tems and Weyl groupoids for Nichols algebras. (2008) math.QA
arXiv:0807.0691

[Henn 1996] Hennings, Mark. Invariants of links and 3-manifolds
obtained from Hopf algebras. J. London Math. Soc. (2) 54 (1996),
no. 3, 594–624.

[Hey-Swe 1969] Heyneman, Robert G.; Sweedler, Moss E. Affine
Hopf algebras. II. J. J. Algebra 13 1969 192–241.

[Hey-Swe 1970] Heyneman, Robert G.; Sweedler, Moss E. Affine
Hopf algebras. II. J. Algebra 16 1970 271–297.
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