Name (print)

(1) There are four problems on this exam. Problem 4 is on the back. (2) Return this exam copy with your test booklet. (3) You are expected to abide by the University's rules concerning academic honesty.

1. (30 pts.) Let A and B be sets.
a) Define the sets $A \cap B$ and $A \cup B$ using conditional definitions.
b) What does it mean for $x \notin A \cap B$? For $x \notin A \cup B$?
c) Let U be a universal set and $A, B \subseteq U$. Show that $A=(A \cap B) \cup\left(A \cap B^{c}\right)$ and that the union is disjoint.
d) Suppose that $A=\{1,0, \pi\}$. Compute $P(A)$.
2. (20 pts.) For sets A_{1}, \ldots, A_{n} we define the union $A_{1} \cup \cdots \cup A_{n}$ and intersection $A_{1} \cap \cdots \cap A_{n}$ inductively by

$$
A_{1} \cup \cdots \cup A_{n}= \begin{cases}A_{1} & : n=1 \\ \left(A_{1} \cup \cdots \cup A_{n-1}\right) \cup A_{n} & : n>1\end{cases}
$$

and

$$
A_{1} \cap \cdots \cap A_{n}= \begin{cases}A_{1} & : n=1 \\ \left(A_{1} \cap \cdots \cap A_{n-1}\right) \cap A_{n} & : n>1\end{cases}
$$

Now suppose that U is a universal set and $A_{1}, \ldots, A_{n} \subseteq U$. Use De Morgan's Laws and the definitions above to construct a proof by induction that

$$
\left(A_{1} \cup \cdots \cup A_{n}\right)^{c}=A_{1}^{c} \cap \cdots \cap A_{n}^{c} .
$$

[Comment: You may assume $A_{1} \cup \cdots \cup A_{m}, A_{1} \cap \cdots \cap A_{m} \subseteq U$ for all $A_{1}, \ldots, A_{m} \subseteq U$. The steps of your proof must at least be implicitly justified.]
3. (25 pts.) Let $f: A \longrightarrow B$ be a function and suppose $X, Y \subseteq A$.
a) Show that $\vec{f}(X \cap Y) \subseteq \vec{f}(X) \cap \vec{f}(Y)$. [Comment: $\vec{f}(X)=\{f(x) \mid x \in X\}=$ $f(X)$, the latter notation was used in class.]
b) Suppose that f is an injection. Show that $\vec{f}(X \cap Y)=\vec{f}(X) \cap \vec{f}(Y)$.
c) Now suppose that $A=\{1,2,3,4\}, B=\{5,6,7\}, X=\{1,2\}$, and $Y=\{2,3\}$. Find a surjection $g: A \longrightarrow B$ such that $\vec{g}(X \cap Y) \subset \vec{g}(X) \cap \vec{g}(Y)$. Justify your answer.
4. (25 pts.) A committee of 7 is to be formed from a group of 10 people. At least one of two individuals A and B is to be on the committee. Let X be the set of those committees of 7 which include A and let Y be the set of those committees of 7 which include B.
a) Determine $|X|$ and $|Y|$ explicitly.
b) Determine explicitly the number of the committees of 7 which include both A and B. Express the set of these committees in terms of X and Y.
c) Use the inclusion-exclusion principle to determine explicitly the number of committees of 7 which include either A or B (perhaps both). Express the set of these committees in terms of X and Y.

