1. (20 points total) d, a, b, r, q are integers.

 a) Since $d|a$ and $d|b$ there are integers x and y such that $xd = a$ and $yd = b$. Therefore

 $$ra + sb = r(xd) + s(yd) = (rx)d + (sy)d = (rx + sy)d$$

 which means $d|(ra + sb)$. (8 points)

 b) $a = qb + r$. Suppose that $d|a$ and $d|b$. Then $d|(1a + (−q)b)$ by part a). Thus $d|r$. We have shown that a divisor of a and b is a divisor of r and is thus a divisor of b and r. (6 points)

 Conversely, suppose $d|b$ and $d|r$. Then $d|(qb + 1r)$ by part a). Thus $d|a$. We have shown that a divisor of b and r is a divisor of a and is thus a divisor of a and b. (6 points)

2. (20 points total) By Problem 1 the set of common divisors of a and b is the set of common divisors of b and r. Therefore $\text{gcd}(a, b) = \text{gcd}(b, r)$. Part b) is a direct consequence of this equation. (12 points)

 Suppose $r = 0$. Since \mathbb{Z} is the set of divisors of 0, the set of common divisors of b and r is the set of divisors of b. Since $b > 0$ it follows that the greatest integer among the divisors of b is b itself. Thus part a) follows. (8 points)

3. (20 points total) Problem 2 is to be applied.

 a) $a = 100$ and $b = 3$. Since $100 = 33·3 + 1$ we conclude $\text{gcd}(100, 3) = \text{gcd}(3, 1) = 1$. (5 points)

 b) $a = 100$ and $b = 82$. The calculations

 $$
 \begin{align*}
 100 & = 1·82 + 18 \\
 82 & = 4·18 + 10 \\
 18 & = 1·10 + 8 \\
 10 & = 1·8 + 2 \\
 8 & = 4·2 + 0
 \end{align*}
 $$
show that
\[\gcd(100, 82) = \gcd(82, 18) = \gcd(18, 10) = \gcd(10, 8) = \gcd(8, 2) = 2. \]

(15 points)

4. (20 points total) This is a bit of a challenge. Part a) makes the technical
details easy. Our basic premise is \(p \) and \(a \) are positive integers and \(p|a^2 \).

a) Since \(p|a^2 \) there is an integer \(x \) such that \(xp = a^2 \). Thus for integers \(r, s \) the calculation
\[
(ra + sp)^2 = (ra)^2 + 2(ra)(sp) + (sp)^2
= r^2a^2 + 2rasp + s^2p^2
= r^2xp + 2rasp + s^2p^2
= (r^2x + 2ras + s^2p)p
\]
shows that \(p|(ra + sp)^2 \). (5 points)

b) We prove the assertion \(p|a^2 \) implies \(p|a \) by induction on \(a \) (the strong
induction principle is used). The case \(a = 1 \) is vacuous since \(p \nmid 1^2 \). Thus the
conclusion is true for \(a = 1 \) (that is \(p|1^2 \) implies \(p|1 \)).

Suppose that \(a > 1 \) and \(p|b^2 \) implies \(p|b \) is true for all \(1 \leq b < a \). Suppose
\(p|a^2 \).

Case 1: \(a \leq p \). By Theorem 15.1.1 there are integers \(q, r \) such that \(p = qa + r \)
and \(0 \leq r < a \). Since \(r = (-q)a + 1p \) we conclude that \(p|r^2 \) by part a). Thus
\(p|r \) by our induction hypothesis. If \(r \neq 0 \) then \(p \leq r \) since \(0 \leq r \). But then
\(r < a \leq p \leq r \), a contradiction. Therefore \(r = 0 \) which means \(p = qa \). Since
\(p \) is prime and \(a \geq 1 \) necessarily \(a = 1 \) or \(a = p \). The former is not possible
since \(p|a^2 \). Thus \(p = a \) which means \(p|a \).

Case 2: \(a \nleq p \) or equivalently \(p < a \). By Theorem 15.1.1 there are integers
\(q, r \) such that \(a = qp + r \) and \(0 \leq r < p \). Since \(r = (-q)p + 1q \) it follows
by part a) again that \(p|r^2 \). Now \(0 \leq r < p < a \) means \(p|r \) by the induction
hypothesis. Therefore \(p|(qp + 1r) \) by part a) of Problem 1, or \(p|a \).

We have shown that if \(a > 1 \) and the induction hypothesis is true for
\(1, \ldots, a - 1 \) then it is true for \(a \). Since the assertion is true for \(a = 1 \), by the
strong induction principle the assertion is true for all \(a \geq 1 \). (15 points)