1. (12 pts.) Find the unique solution to \(y'' - y' - 6y = 0 \), where \(y(0) = 2 \) and \(y'(0) = -3 \).

Solution: The auxiliary equation is \(r^2 - r - 6 = 0 \). Since \(r^2 - r - 6 = (r - 3)(r + 2) \) the auxiliary equation has two distinct real roots \(r = 3, -2 \) (3 points). Therefore the general solution is

\[
y = c_1 e^{3x} + c_2 e^{-2x}. \quad (4 \text{ points})
\]

Since

\[
y' = 3c_1 e^{3x} - 2c_2 e^{-2x}
\]

we need to solve the system

\[
\begin{align*}
2 & = y(0) = c_1 + c_2 \\
-3 & = y'(0) = 3c_1 - 2c_2
\end{align*}
\]

which has solution

\[
c_1 = \frac{1}{5} \quad \text{and} \quad c_2 = \frac{9}{5}.
\]

Therefore

\[
y = \frac{1}{5} e^{3x} + \frac{1}{5} e^{-2x} \quad (4 \text{ points}).
\]

2. (8 pts.) Find the general solution to \(y'' + y' + 5y = 0 \).

Solution: The auxiliary equation is \(r^2 + r + 5 = 0 \) which has complex roots \(r = -\frac{1}{2} \pm \frac{\sqrt{19}}{2}i \) (4 points). Therefore the general solution is

\[
y = c_1 e^{-\frac{1}{2}x} \cos(\frac{\sqrt{19}}{2}x) + c_2 e^{-\frac{1}{2}x} \sin(\frac{\sqrt{19}}{2}x). \quad (4 \text{ points}).
\]
Name (print) __

Discussion (circle day, time) Tu Th 10 12

(1) Show your work for full credit. (2) Give exact answers whenever possible; otherwise give answers accurate to two decimal places. (3) You are expected to abide by the University’s rules concerning academic honesty.

1. (12 pts.) Find the unique solution to \(y'' - y' - 20y = 0 \), where \(y(0) = -1 \) and \(y'(0) = 2 \).

Solution: The auxiliary equation is \(r^2 - r - 20 = 0 \). Since \(r^2 - r - 20 = (r - 5)(r + 4) \) the auxiliary equation has two distinct real roots \(r = 5, -4 \) (4 points). Therefore the general solution is

\[
y = c_1 e^{5x} + c_2 e^{-4x}. \quad (4 \text{ points})
\]

Since

\[
y' = 5c_1 e^{5x} - 4c_2 e^{-2x}
\]

we need to solve the system

\[
\begin{align*}
-1 &= y(0) = c_1 + c_2 \\
2 &= y'(0) = 5c_1 - 4c_2
\end{align*}
\]

which has solution

\[
c_1 = -\frac{2}{9} \quad \text{and} \quad c_2 = -\frac{7}{9}.
\]

Therefore

\[
y = -\frac{2}{9} e^{5x} - \frac{7}{9} e^{-4x} \quad (4 \text{ points}).
\]

2. (8 pts.) Find the general solution to \(y'' + 3y' + 4y = 0 \).

Solution: The auxiliary equation is \(r^2 + 3r + 4 = 0 \) which has complex roots \(r = -\frac{3}{2} \pm \frac{\sqrt{7}i}{2} \) (4 points). Therefore the general solution is

\[
y = c_1 e^{-\frac{3}{2}x} \cos\left(\frac{\sqrt{7}}{2} x\right) + c_2 e^{-\frac{3}{2}x} \sin\left(\frac{\sqrt{7}}{2} x\right). \quad (4 \text{ points}).
\]