Notes on Cosets, Quotient Groups, and Homomorphisms

10/28/04 Radford

Throughout G is a (multiplicative) group and H is a subgroup of G. Since all fully parenthesized expressions for $a_1 \cdots a_n$, where $a_1, \ldots, a_n \in G$, yield the same product, we will tend to omit parentheses in product expressions.

1 Cosets

A left coset of H in G is a subset of G of the form

$$aH = \{ah \mid h \in H\},$$

where $a \in G$, and a right coset of H in G is a subset of G of the form

$$Ha = \{ha \mid h \in H\},$$

were $a \in G$. Cosets play a very important role in the theory of groups. We begin by listing three of their basic properties.

(1) $a \in aH$ for all $a \in G$.

This follows since $e \in H$ and $a = ae \in aH$ for all $a \in G$.

(2) For $a,b \in G$ either $aH = bH$ or $aH \cap bH = \emptyset$.

To see this, suppose that $a,b \in G$ and $aH \cap bH \neq \emptyset$. We need only show that $aH = bH$.

Since $aH \cap bH \neq \emptyset$ there is an $x \in aH \cap bH$. Since $x \in aH$ we have $x = ah$ for some $h \in H$. Likewise, since $x \in bH$, there is an $h' \in H$ such that $x = bh'$. Thus for $h'' \in H$ we calculate

$$ah'' = ahh^{-1}h'' = (ah)h^{-1}h'' = bh'h^{-1}h'' \in bH;$$
the last product belongs to bH since $h',h,h'' \in H$ and H is a subgroup of G. We have shown that $aH \subseteq bH$. Since $bH \cap aH = aH \cap bH \neq \emptyset$, by the preceding argument $bH \subseteq aH$. Putting the two inclusions together gives $aH = bH$.

(3) For $a \in G$ then function $f_a : H \to aH$ defined by $f_a(h) = ah$ for all $h \in H$ is a set bijection.

By definition of left coset f_a is onto. By cancelation f_a is one-one.

Since the inverse of a set bijection is a set bijection, and the composite of set bijections is a set bijection, $f = f_b \circ (f_a)^{-1} : aH \to bH$ is a set bijection.

As a consequence:

(4) For $a, b \in G$ the left cosets aH and bH have the same cardinality.

Observe that $f(ah) = bh$ for all $h \in H$.

By (1) the set G is the union of the distinct left cosets of H. By (2) distinct left cosets of H are disjoint. Therefore the distinct left cosets of H in G partition G. Since any two left cosets of H in G have the same cardinality by (4) we have:

Theorem 1 Let G be a finite group and suppose that H is a subgroup of G. Then $|H|$ divides $|G|$. Furthermore the number of distinct left cosets of H in G is $|G|/|H|$. □

The reader is left with the exercise of formulating and proving analogs of (1)–(4) for right cosets of H in G. When G is finite note that the number of right cosets of H in G is $|G|/|H|$. Also.

The preceding theorem, without the number of cosets statement, is Lagrange’s Theorem. It has enormous implications for the theory of finite groups. One consequence:

Corollary 1 Let G be a finite group. Then:

a) $|a|$ divides $|G|$ for all $a \in G$.

b) If $|G|$ is prime then $G = \langle a \rangle$ for all $a \in G \setminus e$.

Proof: Since $|a| = |\langle a \rangle|$ for all $a \in G$, part b) follows from part a) and part a) follows from the preceding theorem. □
2 Normal Subgroups

Generally left cosets of H in G are not right cosets of H in G. When they are can be expressed in several important ways. First a technicality.

For $a, b \in G$ we define

$$aHb = \{ahb \mid h \in H\}.$$

Theorem 2 Let G be a group and H be a subgroup of G. Then the following are equivalent:

a) The set of left cosets of H in G is the set of right cosets of H in G.

b) $aH = Ha$ for all $a \in G$.

c) $aHa^{-1} \subseteq H$ for all $a \in G$.

d) $aHa^{-1} = H$ for all $a \in G$.

Proof: To show that all statements are equivalent it suffices to show that a) \implies b) \implies c) \implies d) \implies a).

a) \implies b). Suppose that the set of left cosets of H in G is the set of right cosets of H in G. Let $a \in G$. Then $Ha = bH$ for some $b \in G$. Now $a = ea \in Ha = bH$ by assumption. Since $a \in aH$ by (1), and $a \in bH$ we deduce that $aH = bH$ by (2). Therefore $aH = bH = Ha$.

b) \implies c). Suppose that $aH = Ha$ for all $a \in G$ and let $a \in G$. Then

$$aHa^{-1} = (aH)a^{-1} = (Ha)a^{-1} = Haa^{-1} = He = H$$

which actually shows that $aHa^{-1} = H$. In particular $aHa^{-1} \subseteq H$.

c) \implies d). Suppose that $aHa^{-1} \subseteq H$ for all $a \in G$ and let $a \in G$. By assumption $xHx^{-1} \subseteq H$ for all $x \in G$; thus $aHa^{-1} \subseteq H$ and $a^{-1}Ha = a^{-1}H(a^{-1})^{-1} \subseteq H$. The latter implies

$$H = eHe = aa^{-1}Ha^{-1}a = a(a^{-1}Ha)a^{-1} \subseteq aHa^{-1}.$$

Thus $aHa^{-1} \subseteq H \subseteq aHa^{-1}$ which means that $aHa^{-1} = H$.

d) \implies a). Suppose that $aHa^{-1} = H$ for all $a \in G$ and let $a \in G$. Then

$$aH = aHe = aHa^{-1}a = (aHa^{-1})a = Ha.$$
Therefore the set of left cosets of H in G is the set of all right cosets of H in G. □

If H satisfies any one (hence all) of the conditions of the preceding theorem the H is a normal subgroup of G. Observe that G and (e) are always normal subgroups of G. If $H \subseteq Z(G)$ then H is normal since $aha^{-1} = haa^{-1} = he = h$ for all $a \in G$ and $h \in Z(G)$. In particular all subgroups of an abelian group are normal.

When H is normal all left cosets of H in G form a group.

Proposition 1 Let G be a group and suppose that H is a normal subgroup of G. Then the set of left cosets of H in G is a group, denoted by G/H, where

\[(aH)(bH) = abH\]

for all $a, b \in G$.

Proof: First of all coset multiplication is well-defined. Let $a, a', b, b' \in G$ and suppose that $aH = a'H$, $bH = b'H$. We need to show that $abH = a'b'H$.

Since $aH = Ha$ it follows that $a = ae \in aH = a'H$. Therefore $a = a'h$ for some $h \in H$. Since $Hb = bH$ it follows that $hb = b'h'$ for some $h' \in H$. Combining equations we calculate

\[ab = (a'h)b = a'(hb) = a'(b'h') = (a'b')h' \in a'b'H.\]

Since $ab \in a'b'H$ we conclude that $abH = a'b'H$ by (2). We have shown the multiplication rule is well-defined.

Let $a, b, c \in G$. Then associativity follows by

\[((aH)(bH))(cH) = (abH)cH = (ab)(cH) = a(bc)H = (aH)((bH)(cH)).\]

The coset $eH = H$ is the neutral element of G/H since

\[(aH)(eH) = aeH = aH = eaH = (eH)(aH)\]

for all $a \in G$. For $a \in G$ the calculation

\[(aH)(a^{-1}H) = aa^{-1}H = eH = a^{-1}aH = (a^{-1})H(aH)\]

shows that $a^{-1}H$ is an inverse of aH. □

The group G/H of Proposition 1 is call a **quotient group**.
3 Homomorphisms

Suppose that $f : X \rightarrow Y$ is a function. For a subset Z of X we let

$$f(Z) = \{f(x) \mid x \in Z\} \subseteq Y$$

denote the image of Z under f and for a subset W of Y we let

$$f^{-1}(W) = \{x \in X \mid f(x) \in W\} \subseteq X$$

denote the preimage of W under f. Observe that if f is one-one and onto then $f^{-1}(W)$ is the image of W under the inverse function f^{-1}.

Let G' be a group also and suppose that $f : G \rightarrow G'$ is a function. Then f is a homomorphism if

$$f(ab) = f(a)f(b)$$

for all $a, b \in G$. If f is a homomorphism then f is called an isomorphism if f is one-one and onto. If $G = G'$ and $f : G \rightarrow G$ is an isomorphism, then f is called an automorphism of G.

There are many examples of group homomorphisms. One of the more important ones from a theoretical point of view arises from a normal subgroup H of G. The quotient group G/H of Proposition 1 is a group. Let $\pi : G \rightarrow G/H$ be defined by $\pi(a) = aH$ for all $a \in G$. The calculation

$$\pi(ab) = abH = (aH)(bH) = \pi(a)\pi(b)$$

for all $a, b \in G$ shows that π is a homomorphism.

Suppose that $f : G \rightarrow G'$ is a homomorphism. Then

$$\text{Ker } f = \{a \in G \mid f(a) = e'\} \quad \text{and} \quad \text{Im } f = f(G).$$

are the kernel of f and the image of f respectively. Observe that

$$\text{Ker } f = f^{-1}\{e'\}$$

and is thus a preimage.

Theorem 3 Let G, G' be groups and suppose that $f : G \rightarrow G'$ is a homomorphism. Then:

a) $f(e) = e'$
b) $f(a^n) = f(a)^n$ for all $a \in G$ and $n \in \mathbb{Z}$. In particular $f(a^{-1}) = f(a)^{-1}$ for all $a \in G$.

c) $|f(a)|$ divides $|a|$ for all $a \in G$ of finite order.

d) Let $a, b \in G$. Then $f(a) = f(b)$ if and only if $b \in a(\text{Ker } f)$.

Proof: We first show part a). Since $f(e)^2 = f(e)f(e) = f(ee) = f(e)$, and the equation $x^2 = x$ in a group has a unique solution which is the neutral element, part a) follows.

Let $a \in G$. Part b) splits into two cases: n non-negative and n negative. The first is done by induction. By part a) note that $f(a^0) = f(e) = e' = f(a)^0$. Suppose that $n > 0$ and $f(a^{n-1}) = f(a)^{n-1}$. Then

$$f(a^n) = f(aa^{n-1}) = f(a)f(a^{n-1}) = f(a)^n f(a)^{n-1} = f(a)^n.$$

Therefore $f(a^n) = f(a)^n$ for all $n \geq 0$ by induction on n.

The second case reduces to the first. Since $e' = f(e) = f(aa^{-1}) = f(a)f(a^{-1})$, and likewise $e' = f(a^{-1})f(a)$, it follows that $f(a^{-1}) = f(a)^{-1}$. Suppose that $n < 0$. Then $-n > 0$ and $a^n = (a^{-1})^{-n}$. Using the first case we have

$$f(a^n) = f((a^{-1})^{-n}) = f(a^{-1})^{-n} = (f(a)^{-1})^n = f(a)^n.$$

which completes our proof of part b).

Suppose $a \in G$ has finite order n. Then $f(a^n) = f(a^n) = f(e) = e'$ by parts b) and a). Therefore $f(a)$ has finite order m and m divides n. We have shown part c).

As for part d), let $a, b \in G$. Suppose first of all that $b \in a(\text{Ker } f)$. Then $b = ah$ for some $h \in \text{Ker } f$. Therefore $f(b) = f(ah) = f(a)f(h) = f(a)e' = f(a)$.

Conversely, suppose that $f(a) = f(b)$ and set $h = a^{-1}b$. Then $b = aa^{-1}b = ah$. Since

$$f(b)e' = f(b) = f(ah) = f(a)f(h) = f(b)f(h)$$

it follows that $e' = f(h)$ be right cancelation. Therefore $b \in a(\text{Ker } f)$. This completes our proof of part d). □

Suppose that $f : G \longrightarrow G'$ is a group homomorphism. Then $f(e) = e'$ by part a) of the preceding theorem. Thus $e \in \text{Ker } f$. The homomorphism f is one-one if and only if $\text{Ker } f$ is as small as possible.
Corollary 2 Let G, G' be groups and suppose that $f : G \longrightarrow G'$ is a homomorphism. Then f is one-one if and only if Ker = \{e\}.

Proof: Suppose that f is one-one and let $a \in$ Ker f. Then $f(a) = e'$. Since $f(e) = e'$ also necessarily $a = e$. We have shown that Ker $f = \{e\}$.

Conversely, suppose that Ker $f = \{e\}$. Let $a, b \in G$ and $f(a) = f(b)$. Then by part d) of Theorem 3 we have $b \in a($Ker $f) = a$\{e\} = \{ae\} = \{a\}$ which implies $b = a$. Thus f is one-one. \square

Images and preimages of subgroups under a homomorphism are subgroups.

Theorem 4 Let G, G' be groups and suppose that $f : G \longrightarrow G'$ is a homomorphism.

a) If H is a subgroup of G then $f(H)$ is a subgroup of G'. In particular Im $f = f(G)$ is a subgroup of G'.

b) If H is a normal subgroup of G then $f(H)$ is a normal subgroup of $f(G)$.

c) If K is a subgroup of G' then $f^{-1}(K)$ is a subgroup of G.

d) If K is a normal subgroup of G' then $f^{-1}(K)$ is a normal subgroup of G. In particular Ker $f = f^{-1}(\{e'\})$ is a normal subgroup of G.

Proof: Let H be a subgroup of G. Then $f(H) \neq \emptyset$ since $H \neq \emptyset$. We will show that $f(H)$ is a subgroup of G' by the 1-Step Subgroup Test.

Suppose that $a, b \in f(H)$. Then $a = f(h)$ and $b = f(k)$ for some $h, k \in H$. Since H is a subgroup of G, by the 1-Step Subgroup Test $h^{-1}k \in H$. We use part b) of Theorem 3 to show that

$$a^{-1}b = f(h)f(k)^{-1} = f(h)f(k^{-1}) = f(hk^{-1}) \in f(H).$$

Thus $f(H)$ is a subgroup of G' by the 1-Step Subgroup Test. We have shown part a).

By part a) the image $f(G)$ of f is a subgroup of G'. Since $H \subseteq G$ we have $f(H) \subseteq f(G)$. Therefore $f(H)$ is a subgroup of $f(G)$. To show that $f(H)$ is a normal subgroup of $f(G)$ let $a \in f(H)$ and $b \in f(G)$. Then $a = f(h)$ for
some $h \in H$ and $b = f(g)$ for some $g \in G$. Since H is a normal subgroup of G the product $ghg^{-1} \in H$ by Theorem 2. By part b) of Theorem 3 again

$$bab^{-1} = f(g)f(h)f(g)^{-1} = f(g)f(h)f(g^{-1}) = f(ghg^{-1}) \in f(H).$$

Therefore $f(H)$ is a normal subgroup of $f(G)$ by Theorem 2 again. We have shown part b).

As for part c), we note that $e \in f^{-1}(K)$ as $f(e) = e' \in K$. Thus $f^{-1}(K) \neq \emptyset$. We show that $f^{-1}(K)$ is a subgroup of G by the 1-Step Subgroup Test.

Suppose $a, b \in f^{-1}(K)$. Then $f(a), f(b) \in K$ by definition. Thus

$$f(a^{-1}b) = f(a^{-1})f(b) = f(a)^{-1}f(b) \in K$$

by the 1-Step Subgroup Test. Thus $a^{-1}b \in f^{-1}(K)$. We have shown that $f^{-1}(K)$ is a subgroup of G. The fact that $f^{-1}(K)$ is normal when K is normal is left as a small exercise for the reader. □

Proposition 2 Let G, G' be groups and suppose that $f : G \rightarrow G'$ is an onto homomorphism.

a) If G is abelian then G' is abelian.

b) $f(<a>) = <f(a)>$ for all $a \in G$. In particular if G is cyclic then G' is cyclic.

Proof: Two elements of G' can be written as $f(a)$ and $f(b)$ for some $a, b \in G$ since f is onto. Since G is abelian $f(a)f(b) = f(ab) = f(ba) = f(b)f(a)$. We have shown part a).

The equation of part b) follows by part d) of Theorem 3. Since f is onto, the subsequent statement follows form the equation. □

By part d) of Theorem 4 the kernel of a homomorphism $f : G \rightarrow G'$ is a normal subgroup of G. Suppose that G is a group and H is a normal subgroup of G. We have noted at the beginning of this section that $\pi : G \rightarrow G/H$ defined by $\pi(a) = aH$ for all $a \in G$ is a homomorphism. Note that $a \in \text{Ker} \pi$ if and only if $\pi(a) = eH$ if and only if $aH = eH$ if and only if $a \in eH = H$. Therefore $H = \text{Ker} \pi$. We have shown that:

(5) Kernels and normal subgroups are one in the same.
We end this section with the relationship between the image of a homomorphism and its kernel. Let \(f : G \rightarrow G' \) be a homomorphism. Since \(\text{Im } f = F(G) \) is a subgroup of \(G' \) by part a) of Theorem 4, we may think of \(f \) as a function from \(G \) to \(f(G) \). Thus we will assume that \(f \) is onto. Recall that \(H = \text{Ker } f \) is a normal subgroup of \(G \) by part d) of Theorem 4.

We show that \(F : G/H \rightarrow G' \) defined by

\[
F(aH) = f(a)
\]

for all \(a \in G \) is a well-defined isomorphism. To show well-defined, let \(a, b \in G \) and suppose that \(aH = bH \). Since \(b \in bH = aH = a(\text{Ker } f) \) it follows by part d) of Theorem 3 that \(f(a) = f(b) \). Therefore \(F \) is a well-defined function.

Since \(f \) is onto \(F \) is onto. Suppose that \(a, b \in G \) and \(F(aH) = F(bH) \). Then \(f(a) = f(b) \) by definition. By part d) of Theorem 3 again we have \(b \in a\text{Ker } f = aH \). Therefore \(aH = bH \) by (2). We have shown that \(F \) is one-one. To complete our proof that \(F \) is an isomorphism we need only show that

\[
F((aH)(bH)) = F(abH) = f(ab) = f(a)f(b) = F(aH)F(bH)
\]

for all \(a, b \in G \). Note that the composite \(G \xrightarrow{\pi} G/H \xrightarrow{F} G' \) is \(f \) as \((F \circ \pi)(a) = F(\pi(a)) = F(aH) = f(a) \) for all \(a \in G \). In terms of diagrams

\[
\begin{array}{c}
G/H \xrightarrow{F} G' \\
\pi \\
G \xrightarrow{f}
\end{array}
\]

where \(F \circ \pi = f \). The First Isomorphism Theorem is a codification of the preceeding discussion.

Regarding isomorphic groups as equal, we would equate \(G/H \) and \(G' = \text{Im } f \) and thus equate \(f \) and \(\pi \). From this point of view every homomorphic image has the form \(G/H \) and every homomorphism has the form \(\pi \).