Homework #10 (week of 10/25–10/29)

Due Friday, 10/29/04 in class

1. Let G be a group and H be a subgroup of G.
 a) If $|G:H| = 2$ show that H is a normal subgroup of G.
 b) Suppose that $|H| = 2$. Show that H is a normal subgroup of G if and only if $H \subseteq Z(G)$.
 c) Determine all normal subgroups of $G = S_3$.

2. Let $G = \text{GL}(n, \mathbb{R})$ be the group of all $n \times n$ invertible matrices with real coefficients under matrix multiplication. Suppose that H is a subgroup of G. Show that

 $$N = \{ h \in H \mid \text{Det}(h) = 1 \}$$

 is a normal subgroup of H.

3. Let G be a group and suppose that $\{H_i\}_{i \in I}$ is an indexed family of subgroups of G. Then $H = \cap_{i \in I} H_i$ is a subgroup of G.
 Suppose that H_i is a normal subgroup of G for all $i \in I$. Show that H is a normal subgroup of G.

4. Let $G = S_n$ and $\sigma = (a_1 \ a_2 \ \cdots \ a_m) \in G$ be an m-cycle. Then for $\tau \in G$ the element $\tau \sigma \tau^{-1}$ is an m-cycle given by

 $$\tau \sigma \tau^{-1} = (\tau(a_1) \ \tau(a_2) \ \cdots \ \tau(a_m)).$$ \hspace{1cm} (1)

 Use (1) to find all normal subgroups of $G = S_4$.

1