Homework #12 (week of 11/08–11/12)

Due Friday, 11/12/04 in class

Let G be a group and $a, b \in G$. Recall that the powers a^n are defined by

$$a^n = \begin{cases}
 e & : n = 0; \\
 a^{n-1}a & : n > 0; \\
 (a^{-1})^{-n} & : n < 0.
\end{cases}$$

Recall that the exponent laws $a^{m+n} = a^m a^n$, $(a^m)^n = a^{mn}$ for all $m, n \in \mathbb{Z}$. If a and b commute, that is $ab = ba$, then $(ab)^m = a^m b^m$ for all $m \in \mathbb{Z}$ as well.

Let R be a ring and $a, b \in R$. Then R is a group under addition. Recall that the additive analog $n \cdot a$ of powers is defined by

$$n \cdot a = \begin{cases}
 0 & : n = 0; \\
 (n - 1) \cdot a + a & : n > 0; \\
 (-n) \cdot (-a) & : n < 0.
\end{cases}$$

The additive versions of the exponent laws above are $(m + n) \cdot a = m \cdot a + n \cdot a$, $mn \cdot a = m \cdot (n \cdot a)$, and $m \cdot (a + b) = m \cdot a + m \cdot b$, for all $m, n \in \mathbb{Z}$. The latter holds since addition in R is commutative.

Suppose further that R has a unity 1. We define powers for non-negative integers as above by

$$a^n = \begin{cases}
 1 & : n = 0; \\
 a^{(n-1)}a & : n > 0.
\end{cases}$$

Unless a has a multiplicative inverse negative powers of a are not defined. The exponent laws $a^{m+n} = a^m a^n$ and $(a^m)^n = a^{mn}$ hold for all $m, n \geq 0$. If $ab = ba$ then $(ab)^m = a^m b^m$ for all $m \geq 0$ holds as well.

There is a formula which relates the operation $n \cdot a$ with multiplication in R, namely

$$n \cdot (ab) = (n \cdot a)b = a(n \cdot b)$$

for all $n \in \mathbb{Z}$.

You may use all of the preceding formulas without proof in the exercises below.
1. Let R be a finite ring with unity 1.

 a) Let $a \in R$ be not zero. Show that there is a non-zero $b \in R$ such that $ab = 0 = ba$ or $ab = 1 = ba$. [Hint: Consider the list $1 = a^0, a = a^1, a^2, a^3, \ldots$. Since R is finite $a^\ell = a^m$ for some $0 \leq \ell < m$.]

 Let $R = \mathbb{Z}_{12}$.

 b) For all non-zero $a \in \mathbb{Z}_{12}$ find a non-zero $b \in \mathbb{Z}_{12}$ such that $ab = 0 = ba$ or $ab = 1 = ba$ and indicate which is the case.

 c) Let R^\times be the (abelian) group of units of R under multiplication. Write down a Cayley Table for R^\times.

 d) Find positive integers $1 < n_1, \ldots, n_r$ such that $R^\times \cong \mathbb{Z}_{n_1} \oplus \cdots \oplus \mathbb{Z}_{n_r}$, and $n_1|n_2, \ldots, n_{r-1}|n_r$.

2. Let d be a positive rational number and \sqrt{d} be its positive real square root. Show that

 $$\mathbb{Q}[\sqrt{d}] = \{r + s\sqrt{d} | r, s \in \mathbb{Q}\}$$

 is a subfield of \mathbb{R}. [Hint: Consider two cases: \sqrt{d} rational and \sqrt{d} not rational.]

3. Let $R = \mathbb{Z}_6$. Find a polynomial of the form $X^2 + cX$, where $c \in \mathbb{Z}_6$, which has more than two roots in \mathbb{Z}_6.

4. Let R be a commutative ring with unity and suppose that every polynomial of the form $f(X) = a_0 + a_1X + \cdots + a_nX^n \in R[X]$, where $a_n \neq 0$, has at most n roots in R. Show that R must be an integral domain. [Hint: See the preceding problem.]

5. Let R be a ring and $a, b \in R$ commute (that is $ab = ba$). Show that

 $$(a + b)^n = \sum_{\ell=0}^{n} \binom{n}{\ell} a^{n-\ell} b^\ell$$
holds for all $n \geq 1$. [Hint: Look up a proof of the Binomial Theorem for numbers a and b. You may use the generalized distributive laws

$$a(b_1 + \cdots + b_r) = ab_1 + \cdots + ab_r \quad \text{and} \quad (a_1 + \cdots + a_r)b = a_1 b + \cdots + a_r b$$

for all $a, b_1, \ldots, b_r, b, a_1, \ldots, a_r \in R$ which follow by induction from the distributive laws.]