Solution to Homework #14 (week of 11/22–11/24)

12/02/04 Radford

Suppose that G is an (additive) abelian group and S_1, \ldots, S_n are non-empty subsets of G. Then

$$S_1 + \cdots + S_n = \{s_1 + \cdots s_n \mid s_i \in S_i \text{ for all } 1 \leq i \leq n\}.$$

1. (10 points total) R is a ring.

a) The indexed family of ideals $\{I_s\}_{s \in S}$ is an indexed family of (additive) subgroups of R. We have shown that $I = \cap_{s \in S} I_s$ is an (additive) subgroup of R. (3 points)

 Let $r \in R$ and $a \in I$. Then $a \in I_s$ for all $s \in S$. Let $s \in S$. Then I_s is an ideal of R. Therefore $ra, ar \in I_s$. Consequently $ra, ar \in \cap_{s \in S} I_s = I$. We have shown that I is an ideal of R. (2 points)

 b) Let $I = I_1 + \cdots + I_n$. By assumption I_1, \ldots, I_n are ideals of R. Since they are also additive subgroups of R it follows that $I_i \neq \emptyset$ for all $1 \leq i \leq n$. Therefore $I = I_1 + \cdots + I_n \neq \emptyset$. (1 points)

 Let $x, y \in I$. Then $x = a_1 + \cdots + a_n$ and $y = b_1 + \cdots + b_n$ where $a_i, b_i \in I_i$ for all $1 \leq i \leq n$. Let $1 \leq i \leq n$. Since I_i is a additive subgroup $a_i - b_i \in I_i$. Therefore

 $$x - y = (a_1 + \cdots + a_n) - (b_1 + \cdots + b_n) = (a_1 - b_1) + \cdots (a_n - b_n) \in I_1 + \cdots + I_n$$

 which shows that I is an additive subgroup of R by the 1-Step Subgroup Test. (2 points)

 Now let $r \in R$ and let $1 \leq i \leq n$. Since I_i is an ideal of R we have $ra_i, a_i r \in I_i$. Therefore

 $$rx = r(a_1 + \cdots + a_n) = ra_1 + \cdots + ra_n \in I_1 + \cdots + I_n = I$$
and

\[xr = (a_1 + \cdots + a_n)r = a_1r + \cdots + a_nr \in I_1 + \cdots + I_n = I. \] (2 points)

This completes our proof that \(I \) is an ideal of \(R \).

2. (10 points total) \(R \) is a ring, \(a \in R \), and \(La = \{ ra \mid r \in L \} \).

a) By assumption \(L \) is a left ideal of \(R \) and \(a \in R \). Since \(L \) is an additive subgroup of \(R \) we have \(L \neq \emptyset \). Thus \(La \neq \emptyset \).

Suppose that \(x, y \in La \). Then \(x = sa \) and \(y = ta \) for some \(s, t \in L \). Since \(L \) is an additive subgroup of \(R \) it follows that \(s - t \in L \) by the 1-Step Subgroup Test. Therefore

\[x - y = sa - ta = (s - t)a \in La. \]

by the 1-Step Subgroup Test \(La \) is an additive subgroup of \(R \).

Let \(r \in R \). Then

\[rx = r(sa) = (rs)a \in La \]

since \(L \) is a left ideal of \(R \). Therefore \(La \) is a left ideal of \(R \). (5 points)

b) Suppose that \(L_1, \ldots, L_n \) are left ideals of \(R \). Our argument for part b) of the preceding exercise showed that if \(A_1, \ldots, A_n \) are additive subgroups of \(R \) then \(A_1 + \cdots + A_n \) is an additive subgroup of \(R \). Thus \(L = L_1 + \cdots + L_n \) is an additive subgroup of \(R \).

Suppose that \(r \in R \) and \(x \in L \). Then \(x = a_1 + \cdots + a_n \) where \(a_i \in L_i \) for all \(1 \leq i \leq n \). Fix \(1 \leq i \leq n \). Since \(L_i \) is a left ideal of \(R \) and \(a_i \in L_i \) it follows that \(ra_i \in L_i \). Thus

\[r(a_1 + \cdots + a_n) = ra_1 + \cdots + ra_n \in L_1 + \cdots + L_n = L. \]

We have shown that \(L \) is a left ideal of \(R \). (5 points)

3. (10 points total) Let \(R_1, \ldots, R_n \) be rings with unity and \(R = R_1 \oplus \cdots \oplus R_n \).

a) Since \(I_1, \ldots, I_n \) are ideals of \(R_1, \ldots, R_n \) respectively, they are additive subgroups and hence not empty. Thus \(I_1 \oplus \cdots \oplus I_n \neq \emptyset \). Let \(x, y \in I_1 \oplus \cdots \oplus I_n \).

Then \(x = (a_1, \ldots, a_n) \) and \(y = (b_1, \ldots, b_n) \), where \(a_i, b_i \in I_i \) for all \(1 \leq i \leq n \). Thus \(a_i - b_i \in I_i \) for all \(1 \leq i \leq n \) by the 1-Step Subgroup Test. Thus

\[x - y = (a_1, \ldots, a_n) - (b_1, \ldots, b_n) = (a_1 - b_1, \ldots, a_n - b_n) \in I_1 \oplus \cdots \oplus I_n \]
which means that $I_1 \oplus \cdots \oplus I_n$ is an additive subgroup of $R_1 \oplus \cdots \oplus R_n$ by the 1-Step subgroup Test. Now let $r \in R_1 \oplus \cdots \oplus R_n$. Then $r = (r_1, \ldots, r_n)$ where $r_i \in R_i$ for all $1 \leq i \leq n$. Let $1 \leq i \leq n$. Since I_i is an ideal of R_i the products $r_i a_i, a_i r_i \in R_i$. Therefore

$$rx = (r_1, \ldots, r_n)(a_1, \ldots, a_n) = (r_1 a_1, \ldots, r_n a_n) \in I_1 \oplus \cdots \oplus I_n$$

and

$$xr = (a_1, \ldots, a_n)(r_1, \ldots, r_n) = (a_1 r_1, \ldots, a_n r_n) \in I_1 \oplus \cdots \oplus I_n.$$

This completes our proof that $I_1 \oplus \cdots \oplus I_n$ is an ideal of $R_1 \oplus \cdots \oplus R_n$. (3 points)

b) Let $1 \leq i \leq n$ Then $f_i : R \rightarrow R_i$ defined by $f((a_1, \ldots, a_n)) = a_i$ for all $(a_1, \ldots, a_n) \in R$ is onto. For let $a \in I_i$. Then $f_i((0, \ldots, a_i, \ldots, 0) = a$, where the “a" in the tuple in the i^{th} position.

$$f_i((a_1, \ldots, a_n)(b_1, \ldots, b_n)) = f_i((a_1 b_1, \ldots, a_n b_n))$$

$$= a_i b_i$$

$$= f_i((a_1, \ldots, a_n)) f_i((b_1, \ldots, b_n))$$

for all $(a_1, \ldots, a_n), (b_1, \ldots, b_n) \in R$ shows that f_i is a ring homomorphism. (3 points)

c) Suppose that I is an ideal of R. Then $f_i(I)$ is an ideal of R_i for all $1 \leq i \leq n$ since f_i is an onto ring homomorphism by part b). Let $x = (a_1, \ldots, a_n) \in R$. Then $f_i(x) = a_i$ which means that $x = (f_1(x), \ldots, f_n(x))$. Therefore $I \subseteq f_1(I) \oplus \cdots \oplus f_n(I)$. Let $J = f_1(I) \oplus \cdots \oplus f_n(I)$. We have shown that $I \subseteq J$. Part c) will follow if $I = J$. To do this we need only show that $J \subseteq I$.

Let $e_i = (0, \ldots, 1, \ldots, 0) \in R$ be the n-tuple with entries zero with one exception which has value 1 and is in the i^{th} position. Suppose that $y \in f_1(I) \oplus \cdots \oplus f_n(I)$. Then $y = (f_1(x_1), \ldots, f_n(x_n))$, where $x_i \in I_i$ for all $1 \leq i \leq n$. Thus $x = x_1 e_1 + \cdots + x_n e_n \in I$ since I is an ideal of R. Since

$$f_i(x) = f_i(x_1)f_i(e_1) + \cdots + f_i(x_i)f_i(e_i) + \cdots + f_i(x_n)f_i(e_n)$$

$$= f_i(x_1)0 + \cdots + f_i(x_i)1 + \cdots + f_i(x_n)0$$

$$= f_i(x_i)$$
it follows that
\[x = (f_1(x), \ldots, f_n(x)) = (f_1(x_1), \ldots, f_n(x_n)) = y. \]
Therefore \(y = x \in I \). We have shown that \(J \subseteq I \). (4 points)

4. (10 points total) \(R = \mathbb{Z} \oplus \mathbb{Z} \).

a) Let \(P \) be a prime ideal of \(R \). Since \(R \) is always a prime ideal of \(R \), we may assume that \(P \neq R \). Now \(P = P_1 \oplus P_2 \) for some ideals \(P_1, P_2 \) of \(\mathbb{Z} \), by the preceding exercise. We will show that \(P_1 \) and \(P_2 \) must be prime.

Suppose that \(a, b \in \mathbb{Z} \) and \(ab \in P_1 \). Then
\[(a, 0)(b, 0) = (ab, 0) \in P_1 \oplus P_2 = P \]
means that \((a, 0) \in P_1 \) or \((b, 0) \in P_2 \) since \(P \) is prime. Therefore \(a \in P_1 \) or \(b \in P_2 \). We have shown that \(P_1 \) is prime.

Likewise \(P_2 \) is prime. For suppose that \(ab \in P_2 \). Then
\[(0, a)(0, b) = (0, ab) \in P_1 \oplus P_2 = P \]
means \((0, a) \in P_1 \) or \((0, b) \in P_2 \) since \(P \) is prime. Therefore \(a \in P_1 \) or \(b \in P_2 \).

We show that, in addition, that \(P_1 = \mathbb{Z} \) or \(P_2 = \mathbb{Z} \). For
\[(1, 0)(0, 1) = (0, 0) \in P \]
implies that \((1, 0) \in P_1 \) or \((0, 1) \in P_2 \) since \(P \) is prime. In the first case
\[(a, 0) = (a, 0)(1, 0) \in P \]
for all \(a \in \mathbb{Z} \) since \(P \) is an ideal of \(R \). Thus \(P_1 = \mathbb{Z} \). In the second case
\[(0, a) = (0, a)(0, 1) \in P \]
again since \(P \) is an ideal of \(R \). Thus \(P_2 = \mathbb{Z} \).

Suppose that \(Q \) is a prime ideal of \(\mathbb{Z} \). We leave it as a small exercise that the ideals \(Q \oplus \mathbb{Z} \) and \(\mathbb{Z} \oplus Q \) are prime ideals of \(R \). Thus the prime ideals of \(R \) are
\[Q \oplus \mathbb{Z} \quad \text{and} \quad \mathbb{Z} \oplus Q, \]
where \(Q \) is a prime ideal of \(\mathbb{Z} \). (5 points)

b) Maximal ideals are prime. Thus maximal ideals of \(R \) have the form \(M \oplus \mathbb{Z} \) or \(\mathbb{Z} \oplus M \), where \(M \) is a prime ideal of \(\mathbb{Z} \). Note that any ideal of \(R \) which contains \(M \oplus \mathbb{Z} \) (respectively \(\mathbb{Z} \oplus M \)) must have the form \(M' \oplus \mathbb{Z} \) (respectively \(\mathbb{Z} \oplus M' \)), where \(M' \) is an ideal of \(\mathbb{Z} \). Therefore \(M \) must be maximal. (5 points)