Homework # 5 (week of 09/20–09/24)

Due Friday, 09/24/04 in class

Let G be a group. For a non-empty subset S of G the centralizer of S in G is

$$C_G(S) = \{g \in G \mid gs = sg \text{ for all } s \in S\}.$$

1. Let G be a group and suppose that S is a non-empty subset of G.
 a) Show that $C_G(S)$ is a subgroup of G.
 b) Show that $C_G(S) = \bigcap_{s \in S} C(s)$.
 c) Let $G = \text{GL}(2, \mathbb{R})$ and $S = \{\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \mid a \in \mathbb{R}\}$. Find $C_G(S)$.

 [Hint: For part c), let $g = \begin{pmatrix} x & y \\ z & w \end{pmatrix} \in G$. Then $g \in C_G(S)$ if and only if

 $$\begin{pmatrix} x & y \\ z & w \end{pmatrix} \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x & y \\ z & w \end{pmatrix}$$

 for all $a \in \mathbb{R}$. Thus part c) comes down to solving systems of linear equations. It is easy to see that S is a subgroup of G; this is not part of the problem.]

2. Let $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 7 & 6 & 2 & 1 & 3 \end{pmatrix} \in S_7$.
 a) Write each element of $\langle f \rangle$ as a product of disjoint cycles.
 b) Find the order of f.
 c) What are the orders of the elements of S_7? Justify your answer.
3. Let $G = \mathbb{Z}_{30}$.

 a) Describe each subgroup of G by listing its elements.

 b) For each order, list the elements of G having that particular order.

 c) Find all generators of the subgroup $<3>$ of G.

 d) Construct a lattice diagram for G.