Left Actions by Groups
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The notion of group is based on functions GxXG — G. Suppose that G
is a group and A is a non-empty set. To study groups it is very convenient
to consider more general functions Gx A — A which satisfy “monoid type”
axioms. For a set S, which could be infinite, we let |S| denote the cardinality
of S.

Let GxA — A be a function which we describe by (g,a) — g-a. For
g € G we define

o, A— A
by

o4(a) = g-a
for all a € A. Then

oe(a) = e-a, (0g00n)(a) = o4(on(a)) = g-(h-a), and ogn(a) = (gh)-a
for all a € A and g, h € G. The function GXA — A is a left action of G on
A if
ea=a and g-(h-a) = (gh)-a

for all a € A and g, h € A; that is

0. = Idy and 0400, = Ogp

for all g, h € G.

Suppose the map GxA — A is a left action. We will say that G acts on
A (on the left). Let g € G. Then o400,-1 = 0451 = 0. = Id4. Consequently
041004 = 04-100(4-1)-1 = Id4. We have shown that o, and o,-1 are function
inverses; in particular o, € S4. Let

T:G — Sy



be the function defined by 7(g) = o, for all ¢ € G. The calculation
n(g)om(h) = o400, = 04, = 7(gh)

for all g,h € G shows that 7 is a homomorphism. The map 7 is called a
permutation representation of G. Note that

g-a=7(g)(a) (1)

for all g € G and a € A.

Conversely, suppose that 7 : G — S4 is a homomorphism. Then 7(e) =
Id4. Define a function GxA — A by (1) and set o, = 7(g) for all g € G.
Then o, = Id4 and o400, = oy, for all g,h € G. Our function GxA — A,
which is defined by (g,a) — 7(g)(a), is a left action of G on A and 7 is the
associated permutation representation. Thus the left actions of G on A are
in bijective correspondence with the homomorphisms 7 : G — S4.

Suppose that Gx A — A is a left action of G on A. There are two basic
types of associated actions which arise from restriction.

Let H < G. Then the action of G on A restricts to a left action of H
on A. Suppose that B is a non-empty subset of A such that ¢g-b € B for all
g € G and b € B. Then the action on A restricts to a left G-action on B.

1 Orbits and Stabilizers

Throughout this section GxA — A is a left action of G’ on a non-empty set
A. We continue with the notation above.
Let a € A. Then
G-a={galg € G}

is the G-orbit of a. The relation on A defined by a ~ b if and only if b = g-a
for some g € G is an equivalence relation on A. Observe that

[a] = G-q;

that is the equivalence class containing a and the G-orbit of a are one in the
same. Since equivalence classes partition:

The G-orbits of A partition A. (2)



The subset of G defined by
Go={9€Glga=a}

is called the stabilizer of a. It is easy to see that G, < G.

Consider the function f : G — G-a defined by f(g) = g-a for all g € G.
Since f is surjective, g-a — f~1(g-a) defines a bijection between the orbit
G-a and the set of fibers of f. We show that

[ (ga) = gGa (3)

for all g € G. To see this, first suppose that = € gG,. Then x = gh for some
h € G,. Thus

f(gh) = (gh)-a = g-(h-a) = g-(a) = g-a
which shows that ¢gG, C f~!(g-a). To complete the proof we need only show
that f~'(g-a) C gG..

Suppose that z € f~'(g-a). Then f(z) = g-a. Since f(z) = z-a, from
g-a = x-a we deduce that a = (¢ 'z)-a. Therefore g~z € G, which means
r=g(g7'z) € gG,. We have shown f~!(g-a) C gG,.

By (3) the elements of G-a are in one-one correspondence with the set of
left cosets of G, in GG. Therefore

1G-a| = |G : G, (4)

for all @ € A. In particular |G-a| divides |G| for all a € A when G is finite.
Let 7 : G — S4 be the permutation representation associated with the
left action. Then

Kerm = {ge€G|n(g) =1da}
= {geCGln(g)(a) =a Va e A}
= {geGlga=a VYae A}

which means that

Kerm = ﬂ Gy, (5)

acA

the intersection of the stabilizers of all of the elements of A.



2 The Transitive Case

Throughout this section GxA — A is a left action of G on a non-empty
set A. By (2) the G-orbits of A partition A. The action is called transitive
if there is only one orbit; that is the partition has one cell.

Lemma 1 Suppose that G acts on a non-empty set A transitively and write
A = G-a, where a € A. Let m : G — Sy be the associated permutation
representation. Then:

(a) Kerm <G and Kerm < G,.
(a) If NG and N < G, then N < Ker.

PRrOOF: Part (a) follows from the fact that kernels of homomorphisms are
normal subgroups and (5). To show part (b), suppose that N < G and
N < G,. To show that N < Kerm we need only show that n-z = x for all
x € A; that is n-(g-a) = g-a for all g € G.
Let g € G. Then g 'ng = g 'n(g7')~! € N since N < G. Thus
n:(g-a) = g:((97'ng)-a) = g-(a) = g-a
and we are done. O

We may paraphrase the conclusion of the lemma by saying that Ker 7 is the
largest normal subgroup of GG contained in G,.

3 The Case when G is Finite Cyclic

Proposition 1 Suppose that G = <g> is cyclic of order n and acts on A
on the left. Let a € A and |G-a] =m. Then:

(a) m divides n.
(b) The m-element set G-a = {a,g-a,...,g"™ "a} and g™-a = a.

PrOOF: Part (a) follows by (4) since the index of a subgroup of a finite
group divides the order of the group. As for part (b), note that the list
a=ea=g"a,ga=g"aqg*a ¢ a,...

has a repetition since G-a is finite and mimic the steps in the analysis of the
cyclic group G' = <g> which starts with the list e = ¢°, g%, ¢, ¢%,... . O
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4 Application to Permutations

Let n > 1 and G = S,. Then G acts on A = {1,2,...,n} by function
evaluation:

ol =o(l)

forallco e Gand 1 < ¢ <n. Let 7 € G and set G = <7>. Then G acts
on A by restriction. Let £ € A, let m = |G-{|, and let n = |G| which is the
order of 7. Then m divides n by part (a) of Proposition 1. By part (b) of
the same G-£ = {{,7({),72(¢),..., 7™ ()} and 7™(¢) = £. The effect of 7
on GG-¢ is the same as the m-cycle

() - TmHD).

Observe that the order of the m-cycle is its length m. Since the G-orbits of
A partition A we conclude that 7 is the product of disjoint cycles and their
orders (lengths) divide the order of 7 by part (b) of Proposition 1. Usually
1-cycles are omitted from the product since they are the identity map. If
T is written as the product of disjoint cycles then each cycle accounts for a
G-orbit of A. We have essentially shown:

Proposition 2 Suppose thatn > 1 and Id # 7 € S,,. Then:

(a) T is the product of disjoint cycles of length greater than one. The cycles
commute and this decomposition is unique up to reordering factors.

(b) The order of T is the least common multiple of the orders (lengths) of
the non-trivial cycles of part (a).

We refer to G-¢ as a T-orbit. Let (a b) be a transposition and consider the
product 7" = 7(a b). We will show that the 7/-orbits are the 7-orbits with
one exception: either two of the 7-orbits combine to give one 7’-orbit or one
of the 7-orbits splits into two 7'-orbits. Observe that if a 7-orbit contains
neither a nor b then it is a 7’-orbit.

Case 1: a and b are in different 7-orbits.

By part (b) of Proposition 1 we may write these orbits as

{a,7(a),..., 7" ' (a)} {b,7(b),..., 7 ()}



where 1 <7, s and 7"(a) = a, 7°(b) = b. Observe that the 7’-orbit of a is

{a,7(b),...,7571(b),b,7(a),..., 7" (a)}

which is the union of the two 7-orbits. Thus 7' combines these two T-orbits
into a single T'-orbit.

Case 2: a and b are in the same 7-orbit.

We may write this orbit as

{a,7(a),...,7"(a),..., 7 ()},
where s > 2, 7%(a) = a, 1 <r < s—1, and 7"(a) = b. Observe that this
orbit splits into two 7’-orbits which are
{r(a),...,7 (@)} and  {a,7(a),...,7(a),..., 7 Ha)},

where the “hat” symbol means omission. Thus 7" splits this T-orbit into two
T'-orbits.

Lemma 2 Let my,...,7. € S, be transpositions and suppose Ty --- 7, = Id.
Then r is even.

PRrRoOF: Consider the sequence
Id, Idm, Idry7, ... Idm - - 7.

Let ¢ be the number of times the orbits of a term in the sequence are formed
by combining two orbits of its predecessor and let s be the number of times
they are formed by splitting an orbit of its predecessor. Then r = c+s. Now
n is the number of orbits of Id. Thus Id7r - -- 7. has n + s — ¢ orbits. Since
this permutation is Id it follows that n + s — ¢ = n. Therefore s = c and r is
even. O

Corollary 1 Suppose that 11,...,7,7{,...,Th € S, are transpositions and
Ty T =1+ Th. Then r and r" are both even or they are both odd.

Proor: We build on the proof of the previous Lemma. Since Id7 ---7, =
Id7{ - - - 7/, we have the equation n+s—c = n+s —¢ from which s—c = s'—¢
follows. Thus

rr=d+sd=ct+s+(—c)+(—s)=c+s+2(d —c)=r+2(d —¢)
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which completes our proof. O

Let n > 2and 0 = (a3 as ... a,) € S,. When r > 2 then o is the
product of transpositions in various ways, for example

o = (ajay ... a,)
= (ar a1)-- (a3 a1)(az a1)

= (a1 az)(ar az) - (a4 az)(az az)

since 0 = (ay ay ... a;) = (ag a3 ... a, a;) = --- . Thus by part (b) of
Proposition 2 every permutation is the product of transpositions.

A permutation is called even it it can be written as a product of an even
number of transpositions and is called odd otherwise. Thus, by definition,
if an odd permutation is written as a product transpositions the number
of transpositions must be odd. By virtue of the preceding corollary, if an
even permutation is written as a product of transpositions the number of

transpositions must be even.
Define ¢ : S,, — {—1,1} by

()_ 1 : 71seven
S\T) = —1 : 71is odd

Let o,7 € S,. If 0,7 are even, or they are odd, then o7 is even. If one of
o, T is even and one is odd then o7 is is odd. Thus ¢ is a homomorphism to
the multiplicative subgroup {—1, 1} of the non-zero real numbers. Note that
A,, = Kerg¢ is a set of even permutations of S,,. It is easy to see that

A, <8, and  [Sp: A =2

5 Cayley’s Theorem

Let G be any group and let A be the set of all non-empty subsets of G. Then
G acts on A by
58 =gS

for all g € G and S € A. For a subset S € A observe that
G-S={gS|g € G}. (6)
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Now suppose that H < G. Then with S = H we see by (6) that G-H is the
set of left cosets of H in GG. The action of G on A restricts to an action of GG
on the set of left cosets A = G-H of H in GG. Observe that the stabilizer of
H is

Let m : G — S4 be the corresponding permutation representation. Then
Kef 7 is the largest normal subgroup of G contained in H by part (b) of
Lemma 1. If the only normal subgroup of G contained in H is (e) then 7 is
injective. This is the case when H = (e); here we may identify the set of left
cosets of H with G with since gH = {ge} = {g} for all g € G.

Theorem 1 Let G be a group. Then G is isomorphic to a subgroup of the
permutation group Sg. O

When G if finite Sg ~ S)q|.

Corollary 2 (Cayley’s Theorem) FEvery finite group is isomorphic to a
subgroup of S,, for some positive integer n. O

6 The Class Equation and a Generalization

As in the previous section, let G be any group and let A be the set of all
non-empty subsets of G. Then G acts on A by

g5 =gSg~"
for all g € G and S € A. For a element S € A observe that
G-S={9Sg" g€ G} (7)
is the set of conjugates of S in G and the stabilizer
Gs={geGlgSg™" =5} =Ng(9)
is the normalizer of S in S. Thus
|G- Ne(S)] = |G-S| (8)

by (4). As a consequence, when G is finite the number of conjugates of a
non-empty subset of G divides the order of G.
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Suppose that S = {s} is a singleton set and let g € G. since g{s}g~' =
{s} if and only if gsg~! = s, or equivalently gs = sg,

No({s}) = Ca({s}) = Cals), (9)

Since g-{s} = {s} it follows that G acts on the set of all singleton sub-
sets of G. Identifying s with {s} gives us the left action of G on itself by
conjugation; that is

g5 =9gsg .
The class equation is derived from an analysis if the conjugation action of G
on itself.

For g € G the element gsg~! is called a conjugate of s. The orbit

G-s={gs|lge G} ={gsg”"|g€ G}

is thus the set of conjugates of s and is called the conjugacy class of s. Since
s € G-s, note that

|G-s| =1 if and only if s € Z(G). (10)

Now suppose that G is finite and let G-sq,...G"s, be a listing of the distinct
orbits with more than one element. As |G-s;| = |G : Cg(s;)| by (8) and (9),
we have the class equation:

G| = 1Z(C)| *é‘G Calsi)l, (1)

where |G : Cg(s;)| > 1foral 1 <i<r,
A finite group G is a p-group if p is a prime integer and |G| = p™ for some
m > 1. Such a group is not simple as:

Proposition 3 A finite p-group has a non-trivial center.

PRrROOF: Let G be a finite p-group and consider the class equation. Since the
index of a subgroup of a finite group divides the order of the group, p divides
|G : Ci(s;)| for all 1 < i < r. Since p divides |G|, by the class equation p
divides |Z(G)|. Therefore Z(G) # (e). O

There is a generalization of the class equation for left actions of a group G
on a finite set A. Let z(A) be the set of elements a € A such that G-a = {a}
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and suppose that G-aq,...,G-a, is a list of the distinct orbits of A with more
than one element. Then

Al = [2(A)[+ > |G : G| (12)
i=1
since |G-a;| = |G : G,,| by (2). Part (b) of the following proposition general-
izes Proposition 3.

Proposition 4 Suppose that G is a finite p-group.
(a) Let A be a finite set on which G acts on the left. Then |A| = |z(A)|+pk

for some non-negative integer k. In particular p divides |z(A)| if and
only if p divides |A|.

(b) Let (e) # N < G. Then NNZ(G) # (e).
PROOF: Since G is finite |G-a| = |G : G,| divides |G| for all a € A. Thus part
(a) follows by (12). As for part (b) we note that G acts on N by conjugation.

Since |N| divides |G|, we conclude from part (a) that p divides the order of
z2(N)=NNZ(G). O
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