Left Actions by Groups

10/31/06 (revision of 10/01/06) Radford

The notion of group is based on functions $G \times G \longrightarrow G$. Suppose that G is a group and A is a non-empty set. To study groups it is very convenient to consider more general functions $G \times A \longrightarrow A$ which satisfy "monoid type" axioms. For a set S, which could be infinite, we let |S| denote the cardinality of S.

Let $G \times A \longrightarrow A$ be a function which we describe by $(g, a) \mapsto g \cdot a$. For $g \in G$ we define

 $\sigma_a: A \longrightarrow A$

by

$$\sigma_g(a) = g \cdot a$$

for all $a \in A$. Then

$$\sigma_e(a) = e \cdot a, \quad (\sigma_g \circ \sigma_h)(a) = \sigma_g(\sigma_h(a)) = g \cdot (h \cdot a), \quad \text{and} \quad \sigma_{gh}(a) = (gh) \cdot a$$

for all $a \in A$ and $g, h \in G$. The function $G \times A \longrightarrow A$ is a *left action of* G on A if

$$e \cdot a = a$$
 and $g \cdot (h \cdot a) = (gh) \cdot a$

for all $a \in A$ and $g, h \in A$; that is

$$\sigma_e = \mathrm{Id}_A$$
 and $\sigma_g \circ \sigma_h = \sigma_{gh}$

for all $g, h \in G$.

Suppose the map $G \times A \longrightarrow A$ is a left action. We will say that G acts on A (on the left). Let $g \in G$. Then $\sigma_g \circ \sigma_{g^{-1}} = \sigma_{gg^{-1}} = \sigma_e = \mathrm{Id}_A$. Consequently $\sigma_{g^{-1}} \circ \sigma_g = \sigma_{g^{-1}} \circ \sigma_{(g^{-1})^{-1}} = \mathrm{Id}_A$. We have shown that σ_g and $\sigma_{g^{-1}}$ are function inverses; in particular $\sigma_g \in S_A$. Let

$$\pi: G \longrightarrow S_A$$

be the function defined by $\pi(g) = \sigma_g$ for all $g \in G$. The calculation

$$\pi(g) \circ \pi(h) = \sigma_g \circ \sigma_h = \sigma_{gh} = \pi(gh)$$

for all $g, h \in G$ shows that π is a homomorphism. The map π is called a *permutation representation of G*. Note that

$$g \cdot a = \pi(g)(a) \tag{1}$$

for all $g \in G$ and $a \in A$.

Conversely, suppose that $\pi : G \longrightarrow S_A$ is a homomorphism. Then $\pi(e) = \operatorname{Id}_A$. Define a function $G \times A \longrightarrow A$ by (1) and set $\sigma_g = \pi(g)$ for all $g \in G$. Then $\sigma_e = \operatorname{Id}_A$ and $\sigma_g \circ \sigma_h = \sigma_{gh}$ for all $g, h \in G$. Our function $G \times A \longrightarrow A$, which is defined by $(g, a) \mapsto \pi(g)(a)$, is a left action of G on A and π is the associated permutation representation. Thus the left actions of G on A are in bijective correspondence with the homomorphisms $\pi : G \longrightarrow S_A$.

Suppose that $G \times A \longrightarrow A$ is a left action of G on A. There are two basic types of associated actions which arise from restriction.

Let $H \leq G$. Then the action of G on A restricts to a left action of H on A. Suppose that B is a non-empty subset of A such that $g \cdot b \in B$ for all $g \in G$ and $b \in B$. Then the action on A restricts to a left G-action on B.

1 Orbits and Stabilizers

Throughout this section $G \times A \longrightarrow A$ is a left action of G on a non-empty set A. We continue with the notation above.

Let $a \in A$. Then

$$G \cdot a = \{g \cdot a \mid g \in G\}$$

is the *G*-orbit of a. The relation on A defined by $a \sim b$ if and only if $b = g \cdot a$ for some $g \in G$ is an equivalence relation on A. Observe that

$$[a] = G \cdot a;$$

that is the equivalence class containing a and the G-orbit of a are one in the same. Since equivalence classes partition:

The *G*-orbits of *A* partition *A*.
$$(2)$$

The subset of G defined by

$$G_a = \{g \in G \,|\, g \cdot a = a\}$$

is called the *stabilizer of a*. It is easy to see that $G_a \leq G$.

Consider the function $f: G \longrightarrow G \cdot a$ defined by $f(g) = g \cdot a$ for all $g \in G$. Since f is surjective, $g \cdot a \mapsto f^{-1}(g \cdot a)$ defines a bijection between the orbit $G \cdot a$ and the set of fibers of f. We show that

$$f^{-1}(g \cdot a) = gG_a \tag{3}$$

for all $g \in G$. To see this, first suppose that $x \in gG_a$. Then x = gh for some $h \in G_a$. Thus

$$f(gh) = (gh) \cdot a = g \cdot (h \cdot a) = g \cdot (a) = g \cdot a$$

which shows that $gG_a \subseteq f^{-1}(g \cdot a)$. To complete the proof we need only show that $f^{-1}(g \cdot a) \subseteq gG_a$.

Suppose that $x \in f^{-1}(g \cdot a)$. Then $f(x) = g \cdot a$. Since $f(x) = x \cdot a$, from $g \cdot a = x \cdot a$ we deduce that $a = (g^{-1}x) \cdot a$. Therefore $g^{-1}x \in G_a$ which means $x = g(g^{-1}x) \in gG_a$. We have shown $f^{-1}(g \cdot a) \subseteq gG_a$.

By (3) the elements of $G \cdot a$ are in one-one correspondence with the set of left cosets of G_a in G. Therefore

$$|G \cdot a| = |G : G_a| \tag{4}$$

for all $a \in A$. In particular $|G \cdot a|$ divides |G| for all $a \in A$ when G is finite.

Let $\pi: G \longrightarrow S_A$ be the permutation representation associated with the left action. Then

$$\operatorname{Ker} \pi = \{g \in G \mid \pi(g) = \operatorname{Id}_A\} \\ = \{g \in G \mid \pi(g)(a) = a \ \forall a \in A\} \\ = \{g \in G \mid g \cdot a = a \ \forall a \in A\}$$

which means that

$$\operatorname{Ker} \pi = \bigcap_{a \in A} G_a,\tag{5}$$

the intersection of the stabilizers of all of the elements of A.

2 The Transitive Case

Throughout this section $G \times A \longrightarrow A$ is a left action of G on a non-empty set A. By (2) the G-orbits of A partition A. The action is called *transitive* if there is only one orbit; that is the partition has one cell.

Lemma 1 Suppose that G acts on a non-empty set A transitively and write $A = G \cdot a$, where $a \in A$. Let $\pi : G \longrightarrow S_A$ be the associated permutation representation. Then:

- (a) Ker $\pi \leq G$ and Ker $\pi \leq G_a$.
- (a) If $N \leq G$ and $N \leq G_a$ then $N \leq \text{Ker } \pi$.

PROOF: Part (a) follows from the fact that kernels of homomorphisms are normal subgroups and (5). To show part (b), suppose that $N \leq G$ and $N \leq G_a$. To show that $N \leq \text{Ker } \pi$ we need only show that $n \cdot x = x$ for all $x \in A$; that is $n \cdot (g \cdot a) = g \cdot a$ for all $g \in G$.

Let $g \in G$. Then $g^{-1}ng = g^{-1}n(g^{-1})^{-1} \in N$ since $N \leq G$. Thus

$$n \cdot (g \cdot a) = g \cdot ((g^{-1}ng) \cdot a) = g \cdot (a) = g \cdot a$$

and we are done. \Box

We may paraphrase the conclusion of the lemma by saying that $\text{Ker }\pi$ is the largest normal subgroup of G contained in G_a .

3 The Case when G is Finite Cyclic

Proposition 1 Suppose that $G = \langle g \rangle$ is cyclic of order n and acts on A on the left. Let $a \in A$ and $|G \cdot a| = m$. Then:

- (a) m divides n.
- (b) The m-element set $G \cdot a = \{a, g \cdot a, \dots, g^{m-1} \cdot a\}$ and $g^m \cdot a = a$.

PROOF: Part (a) follows by (4) since the index of a subgroup of a finite group divides the order of the group. As for part (b), note that the list

$$a = e \cdot a = g^0 \cdot a, g \cdot a = g^1 \cdot a, g^2 \cdot a, g^3 \cdot a, \dots$$

has a repetition since $G \cdot a$ is finite and mimic the steps in the analysis of the cyclic group $G = \langle g \rangle$ which starts with the list $e = g^0, g^1, g^2, g^3, \ldots$. \Box

4 Application to Permutations

Let $n \ge 1$ and $\mathcal{G} = S_n$. Then \mathcal{G} acts on $A = \{1, 2, ..., n\}$ by function evaluation:

$$\sigma \cdot \ell = \sigma(\ell)$$

for all $\sigma \in \mathcal{G}$ and $1 \leq \ell \leq n$. Let $\tau \in \mathcal{G}$ and set $G = \langle \tau \rangle$. Then G acts on A by restriction. Let $\ell \in A$, let $m = |G \cdot \ell|$, and let n = |G| which is the order of τ . Then m divides n by part (a) of Proposition 1. By part (b) of the same $G \cdot \ell = \{\ell, \tau(\ell), \tau^2(\ell), \ldots, \tau^{m-1}(\ell)\}$ and $\tau^m(\ell) = \ell$. The effect of τ on $G \cdot \ell$ is the same as the m-cycle

$$(\ell \ \tau(\ell) \ \cdots \ \tau^{m-1}(\ell)).$$

Observe that the order of the *m*-cycle is its length *m*. Since the *G*-orbits of *A* partition *A* we conclude that τ is the product of disjoint cycles and their orders (lengths) divide the order of τ by part (b) of Proposition 1. Usually 1-cycles are omitted from the product since they are the identity map. If τ is written as the product of disjoint cycles then each cycle accounts for a *G*-orbit of *A*. We have essentially shown:

Proposition 2 Suppose that n > 1 and $Id \neq \tau \in S_n$. Then:

- (a) τ is the product of disjoint cycles of length greater than one. The cycles commute and this decomposition is unique up to reordering factors.
- (b) The order of τ is the least common multiple of the orders (lengths) of the non-trivial cycles of part (a).

We refer to $G \cdot \ell$ as a τ -orbit. Let $(a \ b)$ be a transposition and consider the product $\tau' = \tau(a \ b)$. We will show that the τ' -orbits are the τ -orbits with one exception: either two of the τ -orbits combine to give one τ' -orbit or one of the τ -orbits splits into two τ' -orbits. Observe that if a τ -orbit contains neither a nor b then it is a τ' -orbit.

Case 1: a and b are in different τ -orbits.

By part (b) of Proposition 1 we may write these orbits as

$$\{a, \tau(a), \dots, \tau^{r-1}(a)\}$$
 $\{b, \tau(b), \dots, \tau^{s-1}(b)\}$

where $1 \leq r, s$ and $\tau^r(a) = a, \tau^s(b) = b$. Observe that the τ' -orbit of a is

$$\{a, \tau(b), \dots, \tau^{s-1}(b), b, \tau(a), \dots, \tau^{r-1}(a)\}$$

which is the union of the two τ -orbits. Thus τ' combines these two τ -orbits into a single τ' -orbit.

Case 2: a and b are in the same τ -orbit.

We may write this orbit as

$$\{a, \tau(a), \ldots, \tau^r(a), \ldots, \tau^{s-1}(a)\},\$$

where $s \ge 2$, $\tau^s(a) = a$, $1 \le r \le s - 1$, and $\tau^r(a) = b$. Observe that this orbit splits into two τ' -orbits which are

$$\{\tau(a), \ldots, \tau^r(a)\}$$
 and $\{a, \widehat{\tau(a)}, \ldots, \widehat{\tau^r(a)}, \ldots, \tau^{s-1}(a)\}$

where the "hat" symbol means omission. Thus τ' splits this τ -orbit into two τ' -orbits.

Lemma 2 Let $\tau_1, \ldots, \tau_r \in S_n$ be transpositions and suppose $\tau_1 \cdots \tau_r = \text{Id}$. Then r is even.

PROOF: Consider the sequence

$$\mathrm{Id}, \mathrm{Id}\tau_1, \mathrm{Id}\tau_1\tau_2, \ldots, \mathrm{Id}\tau_1\cdots\tau_r.$$

Let c be the number of times the orbits of a term in the sequence are formed by combining two orbits of its predecessor and let s be the number of times they are formed by splitting an orbit of its predecessor. Then r = c + s. Now n is the number of orbits of Id. Thus $\operatorname{Id}\tau_1 \cdots \tau_r$ has n + s - c orbits. Since this permutation is Id it follows that n + s - c = n. Therefore s = c and r is even. \Box

Corollary 1 Suppose that $\tau_1, \ldots, \tau_r, \tau'_1, \ldots, \tau'_{r'} \in S_n$ are transpositions and $\tau_1 \cdots \tau_r = \tau'_1 \cdots \tau'_{r'}$. Then r and r' are both even or they are both odd.

PROOF: We build on the proof of the previous Lemma. Since $\operatorname{Id}\tau_1 \cdots \tau_r = \operatorname{Id}\tau'_1 \cdots \tau'_{r'}$ we have the equation n+s-c = n+s'-c' from which s-c = s'-c' follows. Thus

$$r' = c' + s' = c + s + (c' - c) + (s' - s) = c + s + 2(c' - c) = r + 2(c' - c)$$

which completes our proof. \Box

Let $n \ge 2$ and $\sigma = (a_1 \ a_2 \ \dots \ a_r) \in S_n$. When r > 2 then σ is the product of transpositions in various ways, for example

$$\sigma = (a_1 \ a_2 \ \dots \ a_r)$$

= $(a_r \ a_1) \cdots (a_3 \ a_1)(a_2 \ a_1)$
= $(a_1 \ a_2)(a_r \ a_2) \cdots (a_4 \ a_2)(a_3 \ a_2)$
:

since $\sigma = (a_1 \ a_2 \ \dots \ a_r) = (a_2 \ a_3 \ \dots \ a_r \ a_1) = \cdots$. Thus by part (b) of Proposition 2 every permutation is the product of transpositions.

A permutation is called *even* it it can be written as a product of an even number of transpositions and is called *odd* otherwise. Thus, by definition, if an odd permutation is written as a product transpositions the number of transpositions must be odd. By virtue of the preceding corollary, if an even permutation is written as a product of transpositions the number of transpositions must be even.

Define $\varsigma: S_n \longrightarrow \{-1, 1\}$ by

$$\varsigma(\tau) = \begin{cases} 1 & : \ \tau \text{ is even} \\ -1 & : \ \tau \text{ is odd} \end{cases}$$

Let $\sigma, \tau \in S_n$. If σ, τ are even, or they are odd, then $\sigma\tau$ is even. If one of σ, τ is even and one is odd then $\sigma\tau$ is is odd. Thus ς is a homomorphism to the multiplicative subgroup $\{-1, 1\}$ of the non-zero real numbers. Note that $A_n = \text{Ker }\varsigma$ is a set of even permutations of S_n . It is easy to see that

 $A_n \leq S_n$ and $|S_n : A_n| = 2.$

5 Cayley's Theorem

Let G be any group and let \mathcal{A} be the set of all non-empty subsets of G. Then G acts on \mathcal{A} by

$$s \cdot S = gS$$

for all $g \in G$ and $S \in \mathcal{A}$. For a subset $S \in \mathcal{A}$ observe that

$$G \cdot S = \{ gS \mid g \in G \}. \tag{6}$$

Now suppose that $H \leq G$. Then with S = H we see by (6) that $G \cdot H$ is the set of left cosets of H in G. The action of G on \mathcal{A} restricts to an action of G on the set of left cosets $A = G \cdot H$ of H in G. Observe that the stabilizer of H is

$$G_H = \{g \in G \mid gH = H\} = H.$$

Let $\pi : G \longrightarrow S_A$ be the corresponding permutation representation. Then Kef π is the largest normal subgroup of G contained in H by part (b) of Lemma 1. If the only normal subgroup of G contained in H is (e) then π is injective. This is the case when H = (e); here we may identify the set of left cosets of H with G with since $gH = \{ge\} = \{g\}$ for all $g \in G$.

Theorem 1 Let G be a group. Then G is isomorphic to a subgroup of the permutation group S_G . \Box

When G if finite $S_G \simeq S_{|G|}$.

Corollary 2 (Cayley's Theorem) Every finite group is isomorphic to a subgroup of S_n for some positive integer n. \Box

6 The Class Equation and a Generalization

As in the previous section, let G be any group and let \mathcal{A} be the set of all non-empty subsets of G. Then G acts on \mathcal{A} by

$$g \cdot S = gSg^{-1}$$

for all $g \in G$ and $S \in \mathcal{A}$. For a element $S \in \mathcal{A}$ observe that

$$G \cdot S = \{gSg^{-1} \mid g \in G\} \tag{7}$$

is the set of conjugates of S in G and the stabilizer

$$G_S = \{g \in G \mid gSg^{-1} = S\} = N_G(S)$$

is the normalizer of S in S. Thus

$$|G: \mathcal{N}_G(S)| = |G \cdot S| \tag{8}$$

by (4). As a consequence, when G is finite the number of conjugates of a non-empty subset of G divides the order of G.

Suppose that $S = \{s\}$ is a singleton set and let $g \in G$. since $g\{s\}g^{-1} = \{s\}$ if and only if $gsg^{-1} = s$, or equivalently gs = sg,

$$N_G(\{s\}) = C_G(\{s\}) = C_G(s).$$
(9)

Since $g \cdot \{s\} = \{s\}$ it follows that G acts on the set of all singleton subsets of G. Identifying s with $\{s\}$ gives us the left action of G on itself by conjugation; that is

$$g \cdot s = g s g^{-1}.$$

The class equation is derived from an analysis if the conjugation action of G on itself.

For $g \in G$ the element gsg^{-1} is called a *conjugate* of s. The orbit

$$G \cdot s = \{g \cdot s \mid g \in G\} = \{g s g^{-1} \mid g \in G\}$$

is thus the set of conjugates of s and is called the conjugacy class of s. Since $s \in G \cdot s$, note that

$$|G \cdot s| = 1 \quad \text{if and only if} \quad s \in \mathcal{Z}(G). \tag{10}$$

Now suppose that G is finite and let $G \cdot s_1, \ldots G \cdot s_r$ be a listing of the distinct orbits with more than one element. As $|G \cdot s_i| = |G : C_G(s_i)|$ by (8) and (9), we have the class equation:

$$|G| = |Z(G)| + \sum_{i=1}^{r} |G: C_G(s_i)|,$$
(11)

where $|G: C_G(s_i)| > 1$ for al $1 \le i \le r$.

A finite group G is a *p*-group if p is a prime integer and $|G| = p^m$ for some $m \ge 1$. Such a group is not simple as:

Proposition 3 A finite p-group has a non-trivial center.

PROOF: Let G be a finite p-group and consider the class equation. Since the index of a subgroup of a finite group divides the order of the group, p divides $|G : C_G(s_i)|$ for all $1 \le i \le r$. Since p divides |G|, by the class equation p divides |Z(G)|. Therefore $Z(G) \ne (e)$. \Box

There is a generalization of the class equation for left actions of a group Gon a finite set A. Let z(A) be the set of elements $a \in A$ such that $G \cdot a = \{a\}$ and suppose that $G \cdot a_1, \ldots, G \cdot a_r$ is a list of the distinct orbits of A with more than one element. Then

$$|A| = |z(A)| + \sum_{i=1}^{r} |G: G_{a_i}|$$
(12)

since $|G \cdot a_i| = |G : G_{a_i}|$ by (2). Part (b) of the following proposition generalizes Proposition 3.

Proposition 4 Suppose that G is a finite p-group.

- (a) Let A be a finite set on which G acts on the left. Then |A| = |z(A)| + pkfor some non-negative integer k. In particular p divides |z(A)| if and only if p divides |A|.
- (b) Let $(e) \neq N \trianglelefteq G$. Then $N \cap Z(G) \neq (e)$.

PROOF: Since G is finite $|G \cdot a| = |G : G_a|$ divides |G| for all $a \in A$. Thus part (a) follows by (12). As for part (b) we note that G acts on N by conjugation. Since |N| divides |G|, we conclude from part (a) that p divides the order of $z(N) = N \cap Z(G)$. \Box