Left Actions by Groups

10/31/06 (revision of 10/01/06) Radford

The notion of group is based on functions $G \times G \longrightarrow G$. Suppose that G is a group and A is a non-empty set. To study groups it is very convenient to consider more general functions $G \times A \longrightarrow A$ which satisfy "monoid type" axioms. For a set S, which could be infinite, we let $|S|$ denote the cardinality of S.

Let $G \times A \longrightarrow A$ be a function which we describe by $(g, a) \mapsto g \cdot a$. For $g \in G$ we define

$$
\sigma_{g}: A \longrightarrow A
$$

by

$$
\sigma_{g}(a)=g \cdot a
$$

for all $a \in A$. Then

$$
\sigma_{e}(a)=e \cdot a, \quad\left(\sigma_{g} \circ \sigma_{h}\right)(a)=\sigma_{g}\left(\sigma_{h}(a)\right)=g \cdot(h \cdot a), \quad \text { and } \quad \sigma_{g h}(a)=(g h) \cdot a
$$

for all $a \in A$ and $g, h \in G$. The function $G \times A \longrightarrow A$ is a left action of G on A if

$$
e \cdot a=a \quad \text { and } \quad g \cdot(h \cdot a)=(g h) \cdot a
$$

for all $a \in A$ and $g, h \in A$; that is

$$
\sigma_{e}=\operatorname{Id}_{A} \quad \text { and } \quad \sigma_{g} \circ \sigma_{h}=\sigma_{g h}
$$

for all $g, h \in G$.
Suppose the map $G \times A \longrightarrow A$ is a left action. We will say that G acts on A (on the left). Let $g \in G$. Then $\sigma_{g} \circ \sigma_{g^{-1}}=\sigma_{g g^{-1}}=\sigma_{e}=\operatorname{Id}_{A}$. Consequently $\sigma_{g^{-1}} \circ \sigma_{g}=\sigma_{g^{-1}} \circ \sigma_{\left(g^{-1}\right)^{-1}}=\operatorname{Id}_{A}$. We have shown that σ_{g} and $\sigma_{g^{-1}}$ are function inverses; in particular $\sigma_{g} \in S_{A}$. Let

$$
\pi: G \longrightarrow S_{A}
$$

be the function defined by $\pi(g)=\sigma_{g}$ for all $g \in G$. The calculation

$$
\pi(g) \circ \pi(h)=\sigma_{g} \circ \sigma_{h}=\sigma_{g h}=\pi(g h)
$$

for all $g, h \in G$ shows that π is a homomorphism. The map π is called a permutation representation of G. Note that

$$
\begin{equation*}
g \cdot a=\pi(g)(a) \tag{1}
\end{equation*}
$$

for all $g \in G$ and $a \in A$.
Conversely, suppose that $\pi: G \longrightarrow S_{A}$ is a homomorphism. Then $\pi(e)=$ Id_{A}. Define a function $G \times A \longrightarrow A$ by (1) and set $\sigma_{g}=\pi(g)$ for all $g \in G$. Then $\sigma_{e}=\operatorname{Id}_{A}$ and $\sigma_{g} \circ \sigma_{h}=\sigma_{g h}$ for all $g, h \in G$. Our function $G \times A \longrightarrow A$, which is defined by $(g, a) \mapsto \pi(g)(a)$, is a left action of G on A and π is the associated permutation representation. Thus the left actions of G on A are in bijective correspondence with the homomorphisms $\pi: G \longrightarrow S_{A}$.

Suppose that $G \times A \longrightarrow A$ is a left action of G on A. There are two basic types of associated actions which arise from restriction.

Let $H \leq G$. Then the action of G on A restricts to a left action of H on A. Suppose that B is a non-empty subset of A such that $g \cdot b \in B$ for all $g \in G$ and $b \in B$. Then the action on A restricts to a left G-action on B.

1 Orbits and Stabilizers

Throughout this section $G \times A \longrightarrow A$ is a left action of G on a non-empty set A. We continue with the notation above.

Let $a \in A$. Then

$$
G \cdot a=\{g \cdot a \mid g \in G\}
$$

is the G-orbit of a. The relation on A defined by $a \sim b$ if and only if $b=g \cdot a$ for some $g \in G$ is an equivalence relation on A. Observe that

$$
[a]=G \cdot a ;
$$

that is the equivalence class containing a and the G-orbit of a are one in the same. Since equivalence classes partition:

$$
\begin{equation*}
\text { The } G \text {-orbits of } A \text { partition } A \text {. } \tag{2}
\end{equation*}
$$

The subset of G defined by

$$
G_{a}=\{g \in G \mid g \cdot a=a\}
$$

is called the stabilizer of a. It is easy to see that $G_{a} \leq G$.
Consider the function $f: G \longrightarrow G \cdot a$ defined by $f(g)=g \cdot a$ for all $g \in G$. Since f is surjective, $g \cdot a \mapsto f^{-1}(g \cdot a)$ defines a bijection between the orbit $G \cdot a$ and the set of fibers of f. We show that

$$
\begin{equation*}
f^{-1}(g \cdot a)=g G_{a} \tag{3}
\end{equation*}
$$

for all $g \in G$. To see this, first suppose that $x \in g G_{a}$. Then $x=g h$ for some $h \in G_{a}$. Thus

$$
f(g h)=(g h) \cdot a=g \cdot(h \cdot a)=g \cdot(a)=g \cdot a
$$

which shows that $g G_{a} \subseteq f^{-1}(g \cdot a)$. To complete the proof we need only show that $f^{-1}(g \cdot a) \subseteq g G_{a}$.

Suppose that $x \in f^{-1}(g \cdot a)$. Then $f(x)=g \cdot a$. Since $f(x)=x \cdot a$, from $g \cdot a=x \cdot a$ we deduce that $a=\left(g^{-1} x\right) \cdot a$. Therefore $g^{-1} x \in G_{a}$ which means $x=g\left(g^{-1} x\right) \in g G_{a}$. We have shown $f^{-1}(g \cdot a) \subseteq g G_{a}$.

By (3) the elements of $G \cdot a$ are in one-one correspondence with the set of left cosets of G_{a} in G. Therefore

$$
\begin{equation*}
|G \cdot a|=\left|G: G_{a}\right| \tag{4}
\end{equation*}
$$

for all $a \in A$. In particular $|G \cdot a|$ divides $|G|$ for all $a \in A$ when G is finite.
Let $\pi: G \longrightarrow S_{A}$ be the permutation representation associated with the left action. Then

$$
\begin{aligned}
\operatorname{Ker} \pi & =\left\{g \in G \mid \pi(g)=\operatorname{Id}_{A}\right\} \\
& =\{g \in G \mid \pi(g)(a)=a \forall a \in A\} \\
& =\{g \in G \mid g \cdot a=a \forall a \in A\}
\end{aligned}
$$

which means that

$$
\begin{equation*}
\operatorname{Ker} \pi=\bigcap_{a \in A} G_{a} \tag{5}
\end{equation*}
$$

the intersection of the stabilizers of all of the elements of A.

2 The Transitive Case

Throughout this section $G \times A \longrightarrow A$ is a left action of G on a non-empty set A. By (2) the G-orbits of A partition A. The action is called transitive if there is only one orbit; that is the partition has one cell.
Lemma 1 Suppose that G acts on a non-empty set A transitively and write $A=G \cdot a$, where $a \in A$. Let $\pi: G \longrightarrow S_{A}$ be the associated permutation representation. Then:
(a) $\operatorname{Ker} \pi \unlhd G$ and $\operatorname{Ker} \pi \leq G_{a}$.
(a) If $N \unlhd G$ and $N \leq G_{a}$ then $N \leq \operatorname{Ker} \pi$.

Proof: Part (a) follows from the fact that kernels of homomorphisms are normal subgroups and (5). To show part (b), suppose that $N \unlhd G$ and $N \leq G_{a}$. To show that $N \leq \operatorname{Ker} \pi$ we need only show that $n \cdot x=x$ for all $x \in A$; that is $n \cdot(g \cdot a)=g \cdot a$ for all $g \in G$.

Let $g \in G$. Then $g^{-1} n g=g^{-1} n\left(g^{-1}\right)^{-1} \in N$ since $N \unlhd G$. Thus

$$
n \cdot(g \cdot a)=g \cdot\left(\left(g^{-1} n g\right) \cdot a\right)=g \cdot(a)=g \cdot a
$$

and we are done.
We may paraphrase the conclusion of the lemma by saying that $\operatorname{Ker} \pi$ is the largest normal subgroup of G contained in G_{a}.

3 The Case when G is Finite Cyclic

Proposition 1 Suppose that $G=\langle g\rangle$ is cyclic of order n and acts on A on the left. Let $a \in A$ and $|G \cdot a|=m$. Then:
(a) m divides n.
(b) The m-element set $G \cdot a=\left\{a, g \cdot a, \ldots, g^{m-1} \cdot a\right\}$ and $g^{m} \cdot a=a$.

Proof: Part (a) follows by (4) since the index of a subgroup of a finite group divides the order of the group. As for part (b), note that the list

$$
a=e \cdot a=g^{0} \cdot a, g \cdot a=g^{1} \cdot a, g^{2} \cdot a, g^{3} \cdot a, \ldots
$$

has a repetition since $G \cdot a$ is finite and mimic the steps in the analysis of the cyclic group $G=<g>$ which starts with the list $e=g^{0}, g^{1}, g^{2}, g^{3}, \ldots$.

4 Application to Permutations

Let $n \geq 1$ and $\mathcal{G}=S_{n}$. Then \mathcal{G} acts on $A=\{1,2, \ldots, n\}$ by function evaluation:

$$
\sigma \cdot \ell=\sigma(\ell)
$$

for all $\sigma \in \mathcal{G}$ and $1 \leq \ell \leq n$. Let $\tau \in \mathcal{G}$ and set $G=\langle\tau\rangle$. Then G acts on A by restriction. Let $\ell \in A$, let $m=|G \cdot \ell|$, and let $n=|G|$ which is the order of τ. Then m divides n by part (a) of Proposition 1. By part (b) of the same $G \cdot \ell=\left\{\ell, \tau(\ell), \tau^{2}(\ell), \ldots, \tau^{m-1}(\ell)\right\}$ and $\tau^{m}(\ell)=\ell$. The effect of τ on $G \cdot \ell$ is the same as the m-cycle

$$
\left(\ell \tau(\ell) \cdots \tau^{m-1}(\ell)\right)
$$

Observe that the order of the m-cycle is its length m. Since the G-orbits of A partition A we conclude that τ is the product of disjoint cycles and their orders (lengths) divide the order of τ by part (b) of Proposition 1. Usually 1 -cycles are omitted from the product since they are the identity map. If τ is written as the product of disjoint cycles then each cycle accounts for a G-orbit of A. We have essentially shown:

Proposition 2 Suppose that $n>1$ and $\operatorname{Id} \neq \tau \in S_{n}$. Then:
(a) τ is the product of disjoint cycles of length greater than one. The cycles commute and this decomposition is unique up to reordering factors.
(b) The order of τ is the least common multiple of the orders (lengths) of the non-trivial cycles of part (a).

We refer to $G \cdot \ell$ as a τ-orbit. Let $(a b)$ be a transposition and consider the product $\tau^{\prime}=\tau(a b)$. We will show that the τ^{\prime}-orbits are the τ-orbits with one exception: either two of the τ-orbits combine to give one τ^{\prime}-orbit or one of the τ-orbits splits into two τ^{\prime}-orbits. Observe that if a τ-orbit contains neither a nor b then it is a τ^{\prime}-orbit.

Case 1: a and b are in different τ-orbits.
By part (b) of Proposition 1 we may write these orbits as

$$
\left\{a, \tau(a), \ldots, \tau^{r-1}(a)\right\} \quad\left\{b, \tau(b), \ldots, \tau^{s-1}(b)\right\}
$$

where $1 \leq r, s$ and $\tau^{r}(a)=a, \tau^{s}(b)=b$. Observe that the τ^{\prime}-orbit of a is

$$
\left\{a, \tau(b), \ldots, \tau^{s-1}(b), b, \tau(a), \ldots, \tau^{r-1}(a)\right\}
$$

which is the union of the two τ-orbits. Thus τ^{\prime} combines these two τ-orbits into a single τ^{\prime}-orbit.
Case 2: a and b are in the same τ-orbit.
We may write this orbit as

$$
\left\{a, \tau(a), \ldots, \tau^{r}(a), \ldots, \tau^{s-1}(a)\right\}
$$

where $s \geq 2, \tau^{s}(a)=a, 1 \leq r \leq s-1$, and $\tau^{r}(a)=b$. Observe that this orbit splits into two τ^{\prime}-orbits which are

$$
\left\{\tau(a), \ldots, \tau^{r}(a)\right\} \quad \text { and } \quad\left\{a, \widehat{\tau(a)}, \ldots, \widehat{\tau^{r}(a)}, \ldots, \tau^{s-1}(a)\right\}
$$

where the "hat" symbol means omission. Thus τ^{\prime} splits this τ-orbit into two τ^{\prime}-orbits.

Lemma 2 Let $\tau_{1}, \ldots, \tau_{r} \in S_{n}$ be transpositions and suppose $\tau_{1} \cdots \tau_{r}=\mathrm{Id}$. Then r is even.

Proof: Consider the sequence

$$
\operatorname{Id}, \operatorname{Id} \tau_{1}, \operatorname{Id} \tau_{1} \tau_{2}, \ldots, \operatorname{Id} \tau_{1} \cdots \tau_{r} .
$$

Let c be the number of times the orbits of a term in the sequence are formed by combining two orbits of its predecessor and let s be the number of times they are formed by splitting an orbit of its predecessor. Then $r=c+s$. Now n is the number of orbits of Id. Thus $\operatorname{Id} \tau_{1} \cdots \tau_{r}$ has $n+s-c$ orbits. Since this permutation is Id it follows that $n+s-c=n$. Therefore $s=c$ and r is even.

Corollary 1 Suppose that $\tau_{1}, \ldots, \tau_{r}, \tau_{1}^{\prime}, \ldots, \tau_{r^{\prime}}^{\prime} \in S_{n}$ are transpositions and $\tau_{1} \cdots \tau_{r}=\tau_{1}^{\prime} \cdots \tau_{r^{\prime}}^{\prime}$. Then r and r^{\prime} are both even or they are both odd.

Proof: We build on the proof of the previous Lemma. Since $\operatorname{Id} \tau_{1} \cdots \tau_{r}=$ $\operatorname{Id} \tau_{1}^{\prime} \cdots \tau_{r^{\prime}}^{\prime}$ we have the equation $n+s-c=n+s^{\prime}-c^{\prime}$ from which $s-c=s^{\prime}-c^{\prime}$ follows. Thus

$$
r^{\prime}=c^{\prime}+s^{\prime}=c+s+\left(c^{\prime}-c\right)+\left(s^{\prime}-s\right)=c+s+2\left(c^{\prime}-c\right)=r+2\left(c^{\prime}-c\right)
$$

which completes our proof.
Let $n \geq 2$ and $\sigma=\left(\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{r}\end{array}\right) \in S_{n}$. When $r>2$ then σ is the product of transpositions in various ways, for example

$$
\begin{aligned}
\sigma & =\left(a_{1} a_{2} \ldots a_{r}\right) \\
& =\left(a_{r} a_{1}\right) \cdots\left(a_{3} a_{1}\right)\left(a_{2} a_{1}\right) \\
& =\left(a_{1} a_{2}\right)\left(a_{r} a_{2}\right) \cdots\left(a_{4} a_{2}\right)\left(a_{3} a_{2}\right)
\end{aligned}
$$

since $\sigma=\left(\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{r}\end{array}\right)=\left(\begin{array}{lllll}a_{2} & a_{3} & \ldots & a_{r} & a_{1}\end{array}\right)=\cdots$. Thus by part (b) of Proposition 2 every permutation is the product of transpositions.

A permutation is called even it it can be written as a product of an even number of transpositions and is called odd otherwise. Thus, by definition, if an odd permutation is written as a product transpositions the number of transpositions must be odd. By virtue of the preceding corollary, if an even permutation is written as a product of transpositions the number of transpositions must be even.

Define $\varsigma: S_{n} \longrightarrow\{-1,1\}$ by

$$
\varsigma(\tau)=\left\{\begin{array}{rll}
1 & : & \tau \text { is even } \\
-1 & : & \tau \text { is odd }
\end{array}\right.
$$

Let $\sigma, \tau \in S_{n}$. If σ, τ are even, or they are odd, then $\sigma \tau$ is even. If one of σ, τ is even and one is odd then $\sigma \tau$ is is odd. Thus ς is a homomorphism to the multiplicative subgroup $\{-1,1\}$ of the non-zero real numbers. Note that $A_{n}=\operatorname{Ker} \varsigma$ is a set of even permutations of S_{n}. It is easy to see that

$$
A_{n} \unlhd S_{n} \quad \text { and } \quad\left|S_{n}: A_{n}\right|=2 .
$$

5 Cayley's Theorem

Let G be any group and let \mathcal{A} be the set of all non-empty subsets of G. Then G acts on \mathcal{A} by

$$
s \cdot S=g S
$$

for all $g \in G$ and $S \in \mathcal{A}$. For a subset $S \in \mathcal{A}$ observe that

$$
\begin{equation*}
G \cdot S=\{g S \mid g \in G\} \tag{6}
\end{equation*}
$$

Now suppose that $H \leq G$. Then with $S=H$ we see by (6) that $G \cdot H$ is the set of left cosets of H in G. The action of G on \mathcal{A} restricts to an action of G on the set of left cosets $A=G \cdot H$ of H in G. Observe that the stabilizer of H is

$$
G_{H}=\{g \in G \mid g H=H\}=H .
$$

Let $\pi: G \longrightarrow S_{A}$ be the corresponding permutation representation. Then Kef π is the largest normal subgroup of G contained in H by part (b) of Lemma 1. If the only normal subgroup of G contained in H is (e) then π is injective. This is the case when $H=(e)$; here we may identify the set of left cosets of H with G with since $g H=\{g e\}=\{g\}$ for all $g \in G$.

Theorem 1 Let G be a group. Then G is isomorphic to a subgroup of the permutation group S_{G}.

When G if finite $S_{G} \simeq S_{|G|}$.
Corollary 2 (Cayley's Theorem) Every finite group is isomorphic to a subgroup of S_{n} for some positive integer n.

6 The Class Equation and a Generalization

As in the previous section, let G be any group and let \mathcal{A} be the set of all non-empty subsets of G. Then G acts on \mathcal{A} by

$$
g \cdot S=g S g^{-1}
$$

for all $g \in G$ and $S \in \mathcal{A}$. For a element $S \in \mathcal{A}$ observe that

$$
\begin{equation*}
G \cdot S=\left\{g S g^{-1} \mid g \in G\right\} \tag{7}
\end{equation*}
$$

is the set of conjugates of S in G and the stabilizer

$$
G_{S}=\left\{g \in G \mid g S g^{-1}=S\right\}=\mathrm{N}_{G}(S)
$$

is the normalizer of S in S. Thus

$$
\begin{equation*}
\left|G: \mathrm{N}_{G}(S)\right|=|G \cdot S| \tag{8}
\end{equation*}
$$

by (4). As a consequence, when G is finite the number of conjugates of a non-empty subset of G divides the order of G.

Suppose that $S=\{s\}$ is a singleton set and let $g \in G$. since $g\{s\} g^{-1}=$ $\{s\}$ if and only if $g s g^{-1}=s$, or equivalently $g s=s g$,

$$
\begin{equation*}
\mathrm{N}_{G}(\{s\})=\mathrm{C}_{G}(\{s\})=\mathrm{C}_{G}(s) . \tag{9}
\end{equation*}
$$

Since $g \cdot\{s\}=\{s\}$ it follows that G acts on the set of all singleton subsets of G. Identifying s with $\{s\}$ gives us the left action of G on itself by conjugation; that is

$$
g \cdot s=g s g^{-1}
$$

The class equation is derived from an analysis if the conjugation action of G on itself.

For $g \in G$ the element $g s g^{-1}$ is called a conjugate of s. The orbit

$$
G \cdot s=\{g \cdot s \mid g \in G\}=\left\{g s g^{-1} \mid g \in G\right\}
$$

is thus the set of conjugates of s and is called the conjugacy class of s. Since $s \in G \cdot s$, note that

$$
\begin{equation*}
|G \cdot s|=1 \quad \text { if and only if } \quad s \in \mathrm{Z}(G) \tag{10}
\end{equation*}
$$

Now suppose that G is finite and let $G \cdot s_{1}, \ldots G \cdot s_{r}$ be a listing of the distinct orbits with more than one element. As $\left|G \cdot s_{i}\right|=\left|G: C_{G}\left(s_{i}\right)\right|$ by (8) and (9), we have the class equation:

$$
\begin{equation*}
|G|=|\mathrm{Z}(G)|+\sum_{i=1}^{r}\left|G: C_{G}\left(s_{i}\right)\right| \tag{11}
\end{equation*}
$$

where $\left|G: C_{G}\left(s_{i}\right)\right|>1$ for al $1 \leq i \leq r$.
A finite group G is a p-group if p is a prime integer and $|G|=p^{m}$ for some $m \geq 1$. Such a group is not simple as:
Proposition 3 A finite p-group has a non-trivial center.
Proof: Let G be a finite p-group and consider the class equation. Since the index of a subgroup of a finite group divides the order of the group, p divides $\left|G: C_{G}\left(s_{i}\right)\right|$ for all $1 \leq i \leq r$. Since p divides $|G|$, by the class equation p divides $|\mathrm{Z}(G)|$. Therefore $\mathrm{Z}(G) \neq(e)$.

There is a generalization of the class equation for left actions of a group G on a finite set A. Let $z(A)$ be the set of elements $a \in A$ such that $G \cdot a=\{a\}$
and suppose that $G \cdot a_{1}, \ldots, G \cdot a_{r}$ is a list of the distinct orbits of A with more than one element. Then

$$
\begin{equation*}
|A|=|z(A)|+\sum_{i=1}^{r}\left|G: G_{a_{i}}\right| \tag{12}
\end{equation*}
$$

since $\left|G \cdot a_{i}\right|=\left|G: G_{a_{i}}\right|$ by (2). Part (b) of the following proposition generalizes Proposition 3.

Proposition 4 Suppose that G is a finite p-group.
(a) Let A be a finite set on which G acts on the left. Then $|A|=|z(A)|+p k$ for some non-negative integer k. In particular p divides $|z(A)|$ if and only if p divides $|A|$.
(b) Let $(e) \neq N \unlhd G$. Then $N \cap Z(G) \neq(e)$.

Proof: Since G is finite $|G \cdot a|=\left|G: G_{a}\right|$ divides $|G|$ for all $a \in A$. Thus part (a) follows by (12). As for part (b) we note that G acts on N by conjugation. Since $|N|$ divides $|G|$, we conclude from part (a) that p divides the order of $z(N)=N \cap Z(G)$.

