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The notion of group is based on functions G×G −→ G. Suppose that G
is a group and A is a non-empty set. To study groups it is very convenient
to consider more general functions G×A −→ A which satisfy “monoid type”
axioms. For a set S, which could be infinite, we let |S| denote the cardinality
of S.

Let G×A −→ A be a function which we describe by (g, a) 7→ g·a. For
g ∈ G we define

σg : A −→ A

by
σg(a) = g·a

for all a ∈ A. Then

σe(a) = e·a, (σg◦σh)(a) = σg(σh(a)) = g·(h·a), and σgh(a) = (gh)·a

for all a ∈ A and g, h ∈ G. The function G×A −→ A is a left action of G on
A if

e·a = a and g·(h·a) = (gh)·a
for all a ∈ A and g, h ∈ A; that is

σe = IdA and σg◦σh = σgh

for all g, h ∈ G.
Suppose the map G×A −→ A is a left action. We will say that G acts on

A (on the left). Let g ∈ G. Then σg◦σg−1 = σgg−1 = σe = IdA. Consequently
σg−1◦σg = σg−1◦σ(g−1)−1 = IdA. We have shown that σg and σg−1 are function
inverses; in particular σg ∈ SA. Let

π : G −→ SA
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be the function defined by π(g) = σg for all g ∈ G. The calculation

π(g)◦π(h) = σg◦σh = σgh = π(gh)

for all g, h ∈ G shows that π is a homomorphism. The map π is called a
permutation representation of G. Note that

g·a = π(g)(a) (1)

for all g ∈ G and a ∈ A.
Conversely, suppose that π : G −→ SA is a homomorphism. Then π(e) =

IdA. Define a function G×A −→ A by (1) and set σg = π(g) for all g ∈ G.
Then σe = IdA and σg◦σh = σgh for all g, h ∈ G. Our function G×A −→ A,
which is defined by (g, a) 7→ π(g)(a), is a left action of G on A and π is the
associated permutation representation. Thus the left actions of G on A are
in bijective correspondence with the homomorphisms π : G −→ SA.

Suppose that G×A −→ A is a left action of G on A. There are two basic
types of associated actions which arise from restriction.

Let H ≤ G. Then the action of G on A restricts to a left action of H
on A. Suppose that B is a non-empty subset of A such that g·b ∈ B for all
g ∈ G and b ∈ B. Then the action on A restricts to a left G-action on B.

1 Orbits and Stabilizers

Throughout this section G×A −→ A is a left action of G on a non-empty set
A. We continue with the notation above.

Let a ∈ A. Then
G·a = {g·a | g ∈ G}

is the G-orbit of a. The relation on A defined by a ∼ b if and only if b = g·a
for some g ∈ G is an equivalence relation on A. Observe that

[a] = G·a;

that is the equivalence class containing a and the G-orbit of a are one in the
same. Since equivalence classes partition:

The G-orbits of A partition A. (2)
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The subset of G defined by

Ga = {g ∈ G | g·a = a}

is called the stabilizer of a. It is easy to see that Ga ≤ G.
Consider the function f : G −→ G·a defined by f(g) = g·a for all g ∈ G.

Since f is surjective, g·a 7→ f−1(g·a) defines a bijection between the orbit
G·a and the set of fibers of f . We show that

f−1(g·a) = gGa (3)

for all g ∈ G. To see this, first suppose that x ∈ gGa. Then x = gh for some
h ∈ Ga. Thus

f(gh) = (gh)·a = g·(h·a) = g·(a) = g·a
which shows that gGa ⊆ f−1(g·a). To complete the proof we need only show
that f−1(g·a) ⊆ gGa.

Suppose that x ∈ f−1(g·a). Then f(x) = g·a. Since f(x) = x·a, from
g·a = x·a we deduce that a = (g−1x)·a. Therefore g−1x ∈ Ga which means
x = g(g−1x) ∈ gGa. We have shown f−1(g·a) ⊆ gGa.

By (3) the elements of G·a are in one-one correspondence with the set of
left cosets of Ga in G. Therefore

|G·a| = |G : Ga| (4)

for all a ∈ A. In particular |G·a| divides |G| for all a ∈ A when G is finite.
Let π : G −→ SA be the permutation representation associated with the

left action. Then

Ker π = {g ∈ G |π(g) = IdA}
= {g ∈ G |π(g)(a) = a ∀a ∈ A}
= {g ∈ G | g·a = a ∀a ∈ A}

which means that
Ker π =

⋂

a∈A

Ga, (5)

the intersection of the stabilizers of all of the elements of A.
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2 The Transitive Case

Throughout this section G×A −→ A is a left action of G on a non-empty
set A. By (2) the G-orbits of A partition A. The action is called transitive
if there is only one orbit; that is the partition has one cell.

Lemma 1 Suppose that G acts on a non-empty set A transitively and write
A = G·a, where a ∈ A. Let π : G −→ SA be the associated permutation
representation. Then:

(a) Ker π £ G and Ker π ≤ Ga.

(a) If N £ G and N ≤ Ga then N ≤ Ker π.

Proof: Part (a) follows from the fact that kernels of homomorphisms are
normal subgroups and (5). To show part (b), suppose that N £ G and
N ≤ Ga. To show that N ≤ Ker π we need only show that n·x = x for all
x ∈ A; that is n·(g·a) = g·a for all g ∈ G.

Let g ∈ G. Then g−1ng = g−1n(g−1)−1 ∈ N since N £ G. Thus

n·(g·a) = g·((g−1ng)·a) = g·(a) = g·a
and we are done. 2

We may paraphrase the conclusion of the lemma by saying that Ker π is the
largest normal subgroup of G contained in Ga.

3 The Case when G is Finite Cyclic

Proposition 1 Suppose that G = <g> is cyclic of order n and acts on A
on the left. Let a ∈ A and |G·a| = m. Then:

(a) m divides n.

(b) The m-element set G·a = {a, g·a, . . . , gm−1·a} and gm·a = a.

Proof: Part (a) follows by (4) since the index of a subgroup of a finite
group divides the order of the group. As for part (b), note that the list

a = e·a = g0·a, g·a = g1·a, g2·a, g3·a, . . .

has a repetition since G·a is finite and mimic the steps in the analysis of the
cyclic group G = <g> which starts with the list e = g0, g1, g2, g3, . . . . 2
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4 Application to Permutations

Let n ≥ 1 and G = Sn. Then G acts on A = {1, 2, . . . , n} by function
evaluation:

σ·` = σ(`)

for all σ ∈ G and 1 ≤ ` ≤ n. Let τ ∈ G and set G = <τ>. Then G acts
on A by restriction. Let ` ∈ A, let m = |G·`|, and let n = |G| which is the
order of τ . Then m divides n by part (a) of Proposition 1. By part (b) of
the same G·` = {`, τ(`), τ 2(`), . . . , τm−1(`)} and τm(`) = `. The effect of τ
on G·` is the same as the m-cycle

(` τ(`) · · · τm−1(`)).

Observe that the order of the m-cycle is its length m. Since the G-orbits of
A partition A we conclude that τ is the product of disjoint cycles and their
orders (lengths) divide the order of τ by part (b) of Proposition 1. Usually
1-cycles are omitted from the product since they are the identity map. If
τ is written as the product of disjoint cycles then each cycle accounts for a
G-orbit of A. We have essentially shown:

Proposition 2 Suppose that n > 1 and Id 6= τ ∈ Sn. Then:

(a) τ is the product of disjoint cycles of length greater than one. The cycles
commute and this decomposition is unique up to reordering factors.

(b) The order of τ is the least common multiple of the orders (lengths) of
the non-trivial cycles of part (a).

2

We refer to G·` as a τ -orbit. Let (a b) be a transposition and consider the
product τ ′ = τ(a b). We will show that the τ ′-orbits are the τ -orbits with
one exception: either two of the τ -orbits combine to give one τ ′-orbit or one
of the τ -orbits splits into two τ ′-orbits. Observe that if a τ -orbit contains
neither a nor b then it is a τ ′-orbit.

Case 1: a and b are in different τ -orbits.

By part (b) of Proposition 1 we may write these orbits as

{a, τ(a), . . . , τ r−1(a)} {b, τ(b), . . . , τ s−1(b)}
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where 1 ≤ r, s and τ r(a) = a, τ s(b) = b. Observe that the τ ′-orbit of a is

{a, τ(b), . . . , τ s−1(b), b, τ(a), . . . , τ r−1(a)}
which is the union of the two τ -orbits. Thus τ ′ combines these two τ -orbits
into a single τ ′-orbit.

Case 2: a and b are in the same τ -orbit.

We may write this orbit as

{a, τ(a), . . . , τ r(a), . . . , τ s−1(a)},
where s ≥ 2, τ s(a) = a, 1 ≤ r ≤ s − 1, and τ r(a) = b. Observe that this
orbit splits into two τ ′-orbits which are

{τ(a), . . . , τ r(a)} and {a, τ̂(a), . . . , ̂τ r(a), . . . , τ s−1(a)},
where the “hat” symbol means omission. Thus τ ′ splits this τ -orbit into two
τ ′-orbits.

Lemma 2 Let τ1, . . . , τr ∈ Sn be transpositions and suppose τ1 · · · τr = Id.
Then r is even.

Proof: Consider the sequence

Id, Idτ1, Idτ1τ2, . . . , Idτ1 · · · τr.

Let c be the number of times the orbits of a term in the sequence are formed
by combining two orbits of its predecessor and let s be the number of times
they are formed by splitting an orbit of its predecessor. Then r = c+s. Now
n is the number of orbits of Id. Thus Idτ1 · · · τr has n + s − c orbits. Since
this permutation is Id it follows that n + s− c = n. Therefore s = c and r is
even. 2

Corollary 1 Suppose that τ1, . . . , τr, τ
′
1, . . . , τ

′
r′ ∈ Sn are transpositions and

τ1 · · · τr = τ ′1 · · · τ ′r′. Then r and r′ are both even or they are both odd.

Proof: We build on the proof of the previous Lemma. Since Idτ1 · · · τr =
Idτ ′1 · · · τ ′r′ we have the equation n+s−c = n+s′−c′ from which s−c = s′−c′

follows. Thus

r′ = c′ + s′ = c + s + (c′ − c) + (s′ − s) = c + s + 2(c′ − c) = r + 2(c′ − c)
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which completes our proof. 2

Let n ≥ 2 and σ = (a1 a2 . . . ar) ∈ Sn. When r > 2 then σ is the
product of transpositions in various ways, for example

σ = (a1 a2 . . . ar)

= (ar a1) · · · (a3 a1)(a2 a1)

= (a1 a2)(ar a2) · · · (a4 a2)(a3 a2)
...

since σ = (a1 a2 . . . ar) = (a2 a3 . . . ar a1) = · · · . Thus by part (b) of
Proposition 2 every permutation is the product of transpositions.

A permutation is called even it it can be written as a product of an even
number of transpositions and is called odd otherwise. Thus, by definition,
if an odd permutation is written as a product transpositions the number
of transpositions must be odd. By virtue of the preceding corollary, if an
even permutation is written as a product of transpositions the number of
transpositions must be even.

Define ς : Sn −→ {−1, 1} by

ς(τ) =

{
1 : τ is even

−1 : τ is odd

Let σ, τ ∈ Sn. If σ, τ are even, or they are odd, then στ is even. If one of
σ, τ is even and one is odd then στ is is odd. Thus ς is a homomorphism to
the multiplicative subgroup {−1, 1} of the non-zero real numbers. Note that
An = Ker ς is a set of even permutations of Sn. It is easy to see that

An £ Sn and |Sn : An| = 2.

5 Cayley’s Theorem

Let G be any group and let A be the set of all non-empty subsets of G. Then
G acts on A by

s·S = gS

for all g ∈ G and S ∈ A. For a subset S ∈ A observe that

G·S = {gS | g ∈ G}. (6)
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Now suppose that H ≤ G. Then with S = H we see by (6) that G·H is the
set of left cosets of H in G. The action of G on A restricts to an action of G
on the set of left cosets A = G·H of H in G. Observe that the stabilizer of
H is

GH = {g ∈ G | gH = H} = H.

Let π : G −→ SA be the corresponding permutation representation. Then
Kef π is the largest normal subgroup of G contained in H by part (b) of
Lemma 1. If the only normal subgroup of G contained in H is (e) then π is
injective. This is the case when H = (e); here we may identify the set of left
cosets of H with G with since gH = {ge} = {g} for all g ∈ G.

Theorem 1 Let G be a group. Then G is isomorphic to a subgroup of the
permutation group SG. 2

When G if finite SG ' S|G|.

Corollary 2 (Cayley’s Theorem) Every finite group is isomorphic to a
subgroup of Sn for some positive integer n. 2

6 The Class Equation and a Generalization

As in the previous section, let G be any group and let A be the set of all
non-empty subsets of G. Then G acts on A by

g·S = gSg−1

for all g ∈ G and S ∈ A. For a element S ∈ A observe that

G·S = {gSg−1 | g ∈ G} (7)

is the set of conjugates of S in G and the stabilizer

GS = {g ∈ G | gSg−1 = S} = NG(S)

is the normalizer of S in S. Thus

|G : NG(S)| = |G·S| (8)

by (4). As a consequence, when G is finite the number of conjugates of a
non-empty subset of G divides the order of G.
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Suppose that S = {s} is a singleton set and let g ∈ G. since g{s}g−1 =
{s} if and only if gsg−1 = s, or equivalently gs = sg,

NG({s}) = CG({s}) = CG(s). (9)

Since g·{s} = {s} it follows that G acts on the set of all singleton sub-
sets of G. Identifying s with {s} gives us the left action of G on itself by
conjugation; that is

g·s = gsg−1.

The class equation is derived from an analysis if the conjugation action of G
on itself.

For g ∈ G the element gsg−1 is called a conjugate of s. The orbit

G·s = {g·s | g ∈ G} = {gsg−1 | g ∈ G}
is thus the set of conjugates of s and is called the conjugacy class of s. Since
s ∈ G·s, note that

|G·s| = 1 if and only if s ∈ Z(G). (10)

Now suppose that G is finite and let G·s1, . . . G·sr be a listing of the distinct
orbits with more than one element. As |G·si| = |G : CG(si)| by (8) and (9),
we have the class equation:

|G| = |Z(G)|+
r∑

i=1

|G : CG(si)|, (11)

where |G : CG(si)| > 1 for al 1 ≤ i ≤ r.
A finite group G is a p-group if p is a prime integer and |G| = pm for some

m ≥ 1. Such a group is not simple as:

Proposition 3 A finite p-group has a non-trivial center.

Proof: Let G be a finite p-group and consider the class equation. Since the
index of a subgroup of a finite group divides the order of the group, p divides
|G : CG(si)| for all 1 ≤ i ≤ r. Since p divides |G|, by the class equation p
divides |Z(G)|. Therefore Z(G) 6= (e). 2

There is a generalization of the class equation for left actions of a group G
on a finite set A. Let z(A) be the set of elements a ∈ A such that G·a = {a}
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and suppose that G·a1, . . . , G·ar is a list of the distinct orbits of A with more
than one element. Then

|A| = |z(A)|+
r∑

i=1

|G : Gai
| (12)

since |G·ai| = |G : Gai
| by (2). Part (b) of the following proposition general-

izes Proposition 3.

Proposition 4 Suppose that G is a finite p-group.

(a) Let A be a finite set on which G acts on the left. Then |A| = |z(A)|+pk
for some non-negative integer k. In particular p divides |z(A)| if and
only if p divides |A|.

(b) Let (e) 6= N £ G. Then N∩Z(G) 6= (e).

Proof: Since G is finite |G·a| = |G : Ga| divides |G| for all a ∈ A. Thus part
(a) follows by (12). As for part (b) we note that G acts on N by conjugation.
Since |N | divides |G|, we conclude from part (a) that p divides the order of
z(N) = N∩Z(G). 2

10


