Let $n \geq 2$. We will show that A_n is simple for $n \neq 4$ and show that A_4 has a unique normal subgroup which lies properly between (e) and A_4. Recall that all 3-cycles are even permutations.

Suppose that $\tau, \sigma \in S_n$. We write $\tau \sigma = \tau \sigma \tau^{-1}$. Since conjugation is an automorphism of S_n the formula

$$\tau(\sigma_1 \cdots \sigma_r) = \tau \sigma_1 \cdots \tau \sigma_r$$

holds for all $\sigma_1, \ldots, \sigma_r \in S_n$. Note that

$$\tau(a_1 \ldots a_r) = (\tau(a_1) \ldots \tau(a_r))$$

holds for all r-cycles in S_n. In particular if $\sigma = \sigma_1 \cdots \sigma_r$ is a decomposition of σ into disjoint cycles then $\tau(\sigma) = \tau \sigma_1 \cdots \tau \sigma_r$ is a decomposition of $\tau \sigma$ into disjoint cycles.

Lemma 1 Let $n \geq 3$. Then A_n is generated by 3-cycles.

Proof: All 3-cycles belong to A_n since they are even permutations. Let $\sigma \in A_n$. Then $\sigma = \tau_1 \tau_2 \cdots \tau_{2r}$ is the product of an even number of transpositions. Thus we may write $\sigma = (\tau_1 \tau_2) \cdots (\tau_{2r-1} \tau_{2r})$. Now a product of transpositions $\tau \tau'$ has the form $(a \ b)(a \ b)$, $(a \ b)(a \ c)$, or $(a \ b)(c \ d)$, where the symbols a, b, c, d are distinct. The calculations

$$(a \ b)(a \ b) = \text{Id}, \quad (a \ b)(a \ c) = (a \ c \ b), \quad \text{and} \quad (a \ b)(c \ d) = (a \ b \ c)(b \ c \ d)$$

show that σ is the product of 3-cycles. \square

Lemma 2 Suppose $N \triangleleft A_n$ and contains a 3-cycle. Then $N = A_n$.

1
Proof: Suppose that \(\sigma = (a \ b \ c) \in N \). Then \(S = \{a, b, c\} \) is the unique non-trivial orbit of \(\sigma \). The 3-cycles which have \(S \) as their non-trivial orbit are \((a \ c \ b) = (a \ b \ c)^{-1}\). In light of Lemma 1 we need only show that any 3-element subset \(S' \) of \(\{1, \ldots, n\} \) is the non-trivial orbit of a 3-cycle in \(N \). We do this in three cases. We may assume \(S \neq S' \), or equivalently \(|S \cap S'| < 3|\).

Case 1: \(|S \cap S'| = 2\). We may assume that \(S' = \{a, b, d\} \), where \(d \not\in S \). Since \((a \ b)(c \ d) \in A_n\),

\[
(b \ a \ d) = (a \ b)(c \ d)(a \ b \ c) \in N.
\]

Case 2: \(|S \cap S'| = 1\). We may assume that \(S' = \{a, d, e\} \) where \(d, e \not\in S \). Since \((b \ d)(c \ e) \in A_n\),

\[
(a \ d \ e) = (b \ d)(c \ e)(a \ b \ c) \in N.
\]

Case 3: \(|S \cap S'| = 0\). Then \(S' = \{d, e, f\} \) where \(d, e, f \not\in S \). Since \((a \ d \ b \ e)(c \ f) \in A_n\),

\[
(d \ e \ f) = (a \ d \ b \ e)(c \ f)(a \ b \ c) \in N.
\]

This completes our proof. \(\Box \)

Lemma 3 Suppose that \(n \geq 3 \) and \((\text{Id}) \neq N \leq A_n\). Then \(N \) contains a product of two disjoint transpositions or a 3-cycle.

Proof: By assumption there is permutation in \(N \) which is not the identity. Among these permutations choose one \(\sigma \) which has the most fixed points (the most one-element orbits) and consider its decomposition into disjoint cycles.

Suppose that \(\sigma \) has a cycle \((a \ b \ c \ \ldots \ d)\) of length at least 4. Then

\[
((a \ b \ d) \sigma)\sigma^{-1} = (a \ b \ d)(a \ b \ c \ \ldots \ d)(a \ b \ c \ \ldots \ d)^{-1} = (b \ d \ c \ \ldots \ a)(d \ \ldots \ c \ b \ a) = (b)(a \ c \ d \ \ldots)
\]

belongs to \(N \), is not the identity, and has more fixed points than \(\sigma \). This contradiction shows that \(\sigma \) is the product of disjoint cycles which have length
2 or 3. We will show that σ is the product of two disjoint 2-cycles or σ is a 3-cycle.

Case 1: σ is the product of disjoint 2-cycles.

We may write $\sigma = (a \ b)(c \ d) \cdots$. Since

\[
\left((a \ b \ c)\sigma \right)^{-1} = \left((a \ b \ c)\left((a \ b)(c \ d)\right)\right) \left((a \ b)(c \ d)\right)^{-1} \\
= \left(b \ c \right)(a \ d)(a \ b)(c \ d) = (a \ c)(b \ d)
\]

belongs to N and fixes all points except four, σ fixes all but at most four points by our choice of σ. Therefore σ is the product two disjoint 2-cycles.

Case 2: One of the cycles of σ is a 3-cycle.

In this case $\sigma^2 \in N$, is not Id, is the product of disjoint 3-cycles, and has at least as many fixed points as σ. Suppose $\sigma^2 = (a \ b \ c)(d \ e \ f) \cdots$. Then

\[
\left((a \ b \ d)\left(\sigma^2\right)\right)^{-2} = \left((a \ b \ d)\left((a \ b \ c)(d \ e \ f)\right)\right) \left((a \ b \ c)(d \ e \ f)\right)^{-1} \\
= (b \ d \ c)(a \ e \ f)(a \ c \ b)(d \ f \ e) \\
= (a \ b \ c \ d)(f)
\]

belong to N and fixes fewer points than σ, a contradiction. Therefore σ^2 is a 3-cycle which means σ is a 3-cycle. □

Theorem 1 Let $n \geq 2$. Then:

(a) A_n is simple if $n = 2, 3$ or $n \geq 5$.

(b) A_n is not simple when $n = 4$. The normal subgroups of A_4 are (Id), A_4, and $N = \{Id, (1 \ 2)(3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4)(2 \ 3)\}$.

Proof: First of all A_n is simple if $n = 2, 3$ since $A_n \simeq \mathbb{Z}_n$ in these cases. Let $n \geq 4$ and suppose $N \leq A_n$ satisfy $N \neq (Id), A_n$. Then N does not contain a 3-cycle by Lemma 2. By Lemma 3 N contains a product of two disjoint 2-cycles $(a \ b)(c \ d)$. The calculation

\[
\left((a \ b \ c)\left((a \ b)(c \ d)\right)\right) \left((a \ b)(c \ d)\right)^{-1} = (b \ e)(c \ d)(a \ b)(c \ d) = (a \ e \ b)
\]

shows that $n \neq 5$. Therefore $n = 4$. Since

\[
(a \ b \ c)\left((a \ b)(c \ d)\right) = (b \ c)(a \ d) = (a \ d)(b \ c)
\]
and
\[(a \, b \, c)((a \, d)(b \, c)) = (b \, d)(c \, a) = (a \, c)(b \, d)\]
it follows that \(N\) contains the subgroup of part (b). Since \(N\) has no 3-cycles, \(N\) must be the subgroup of part (b). Using (1) it is easy to see that, in fact, \(N \leq S_n\). \(\square\)