Fibers, Surjective Functions, and
Quotient Groups

11/01/06 Radford

Let f: X — Y be a function. For a subset Z of X the subset
[(Z)={f(z)|z € 2}
of Y is the image of Z under f. For a subset W of Y the subset
W) ={z € X| f(x) e W}

of X is the pre-image of W under f.

1 Fibers

For y € Y the subset

N y) ={ereX|f(z)=y}

of X is the fiber of f overy. By definition f~'(y) = f~'({y}). Observe that
Y y)=0ify & Im f.

Let y’y/ ceY. Ifx e f_l(y)ﬂf_l(y’) then y = f(:l:) — y/ which means
fYy) = f1(v'). Therefore

FHonf ) =0 or fy) =) (1)

for all y,3’ € Y which implies the set X/ f of non-empty fibers of f partition
X. Let m: X — X/f be the function defined by 7(z) = f~1(f(z)) for all
x € X. The functions 7 and f, and the sets X/f and Y, are closely related.

Proposition 1 Let f : X — Y be a surjective function. Then there is a
unique bijection F : X/f — Y which satisfies For = f.
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PROOF: Uniqueness. Suppose F, F' : X/f — Y satisfy For = F'or. Since
7 is surjective and F'(mw(x)) = F'(n(z)) for all x € X necessarily F' = F'.

Existence. The non-empty fibers of f are the sets f~!(f(x)), where x €
X. If 2,2/ € X and f7!(f(z)) = f7'(f(«')) then f(x) = f(z). Thus
F:X/f — Y given by F(f~!(f(x))) = f(z) is a well-defined function and
it satisfies Flor = f. Since f is surjective F' is surjective. It is is easy to see
that F' is injective. O

By the proposition the set X/ f of fibers of f is in bijective correspondence
with Y when f is surjective. In this case the inverse of F' is given by

y— [ (y)

forally € Y.

There are some interesting philosophical points which are suggested by
the proposition. Suppose that f is surjective. If one does not distinguish
between sets which are in bijective correspondence, then one does not distin-
guish between X/f and Y. From this point of view Y can be thought of as
resulting from a construction in X, the formation of a partition of X whose
cells are the fibers of f, and f can be thought of as 7.

Equivalence relations can be formulated in terms of fibers. First of all,
suppose that f : X — Y is any function. Then x ~ 2’ if and only if
f(z) = f(2') defines an equivalence relation on X since “=" is an equivalence
relation. Thus = ~ 2’ if and only if 2’ € f~'(f(z)). In particular [z] =
7 (f(x)) for all z € X.

Conversely, suppose that X is a non-empty set and ~ is an equivalence
relation on X. Let X be the set of equivalence classes of the relation and
define 7 : X — X by w(z) = [2] for all z € X. Then z ~ 2’ if and
only if 7(x) = 7(2’) which means x ~ 2’ if and only if 2’ € 77'([z]). Thus
[z] = 77 !([x]) for all x € X and X = X/7.

2 Subgroups Revisited

Let G be a group. Here we describe useful necessary and sufficient conditions
for a non-empty subset of G to be a subgroup in terms of set multiplication
and sets of inverses. For non-empty subsets S, 7T of G let

ST ={st|seS,teT} and St={s1tse S}



Lemma 1 Let G be a group and H C G. Then the following are equivalent:

(a) H<G.

(b) H#0, HH = H, and H ' = H.

(c) H#0, HH C H, and H' C H.
PROOF: Suppose that H < G. Then HH C H and H~' C H. Since e € H,
H # (), and h = he for all h € H from which H C HH follows. In particular
HH = H. Since h = (h™})7! for all h € H, from H' C H we deduce
H = (H ')t C H™! as well. Therefore H~* = H. We have shown part (a)
implies part (b).

Part (b) implies part (c) since sets are equal if and only if they contain

each other. Suppose that the hypothesis of (c¢) holds and let a,b € H. Then
ab-' €¢ HH' C HH C H which implies ab~! € H. Since H # () it follows

that H < .
O

3 Homomorphisms

We want to apply our discussion of fibers to homomorphisms. First some
basic properties which homomorphisms satisfy.

Proposition 2 Let f: G — G’ be a homomorphism. Then:
fle) =
fl@t) = f(a)™! foralla € G.

a)
)
c) f(a™) = f(a)" for alla € G and n € Z.
)
)

(
(b
(
(d
(e) If H < G then f[7Y(H') < G.

If H<G then f(H) < G'.



PROOF: f(e) = f(e?) = f(e)? which means that f(e) is a solution to z* = z
in G'. In any group this equation has a unique solution, namely the neural
element. We have established part (a). Let a € G. Since f is a homomor-
phism ¢’ = f(e) = f(aa™') = f(a)f(a™') by part (a). This is enough to show
that f(a™') = f(a)™! and part (b) follows. For n > 0, part (c) follows by
part (a) and induction on n. Suppose n < 0. Then —n > 0. Using part (b)
and part (c) for non-negative integers we have

fla™)y = f((@)™) = fla™) ™" = (f(a)™) " = f(a)"

which completes the argument for part (c). Parts (d) and (e) are left as
exercises. O

For a homomorphism f : G — G’ the fiber f~1(¢/) = f~1({€'}) is called
the kernel of f and is denoted by Ker f. Thus

Kerf={a€ G| f(a) =€}

This particular fiber of f relates to the others in special ways. For a € G
and a non-empty subset S of G we let

aS = {as|s € S} and Sa = {sa|se S}
Proposition 3 Let f: G — G’ be a homomorphism. Then:
(a) Ker f < G.

(b) Let N =Ker f, let a € G, and b= f(a). Then f~1(b) = aN = Na for
alla € G.

PROOF: To show Ker f < G let a,b € Ker f. Then f(ab™') = f(a)f(b7!) =
fla)f(b)™! = e'¢~! = ¢ by part (b) of Proposition 2. Thus ab™* € Ker f.
Since f(e) = €’ by part (a) of the same, it follows that e € Ker f which means
Ker f # (). Therefore Ker f < G.

Assume the hypothesis of part (b). We first show that aN = f~1(b). Let
n € N. Then f(an) = f(a)f(n) = be’ = b which shows that an € f~1(b).
Therefore aN C f~(b). To show the other inclusion, let z € f~!(b). Then
f(z) = b = f(a) which means that f(a 'z) = f(a)"'f(x) = b7'b = € by
part (a) of Proposition 2. We have shown that a~'z € N which implies
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r =a(a"'z) € aN. Therefore f~1(b) C aN from which f~1(b) = aN follows.
To show that f~1(b) = Na also, we need only observe that f : G — G’ is
a homomorphism and use our preceding calculation to deduce Na = a-? N =
f7Hb)- O

A subgroup H of a group G is a normal subgroup of G if aH = Ha for all
a € G. In this case we write H < G. Kernels of homomorphisms are normal
by part (b) of Proposition 3.

Corollary 1 Let f : G — G’ be a homomorphism. Then the following are
equivalent:

(a) f is injective.
(b) Ker f = (e).

PROOF: Any set function f : X — Y is injective if and only if each of its
fibers have at most one element. Thus the corollary follows by part (b) of
the preceding proposition. O

Now let f: G — G’ be a surjective homomorphism and F': G/f — G’
be the set bijection defined at the end of Section 1. Then F(f~*(a’)) =
for all a’ € G'. There is a unique group structure (G/f, o) defined on G/ f
such that F' is an isomorphism. Let a’,b" € G’. Since F' is injective, the
calculation

F(fH(d)ef (1) = F(f (@) F(f (V) = 't = F(f~(a'V)))
shows that
frHa)ef V) = fH(a'V). (2)
Now let N € G/N. Then zN = f~!(f(x)) by part (b) of Proposition 3.
Let a,b € G. Using (2) we have
aNebN = [~(f(a)f(b)) = f~'(f(ab)) = abN.

On the other hand the product of sets (aN)(bN) = a(Nb)N = a(bN)N =
abN N = abN by part (b) of Proposition 1 and Lemma 1. Thus

aNebN = abN = (aN)(bN) (3)

for all a,b € G; in particular the multiplication of (G/f,e) is set multipli-
cation. Combining these observations with Propositions 1 and 3 we have a
version of the First Isomorphism Theorem for groups:
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Theorem 1 Suppose that f : G — G’ is a surjective homomorphism and
let N = Ker f. Then:

(a) N QG and G/f is the set of left cosets of N in G.

(b) G/f is a group under set multiplication and 7 : G — G/ f defined by
m(a) = aN for all a € G is a surjective homomorphism.

(c) There a unique isomorphism F : G/f — G' which satisfies For = f.

|

4 Quotient Groups

In the preceding section we showed that kernels are normal subgroups. Let G
be a group, N <G, and let G/N denote the set of left (or equivalently right)
cosets of N in G. We will show that G/N is group under set multiplication
and that there is a homomorphism 7 : G — G/N with N = Kern. Thus
kernels and normal subgroups are one in the same. When f : G — G’ is a
homomorphism and N = Ker f then G/f = G/N as sets.

Theorem 2 Let G be a group and suppose that N I G. Then:

(a) G/N is a group under set multiplication.

(b) Let m : G — G/N be defined by w(a) = aN for all a € G. Then 7 is
a homomorphism, Kerm = N, and G/N = G /.

PRrROOF: The elements of G/N have the form aN where a € G. Let aN,bN €
G/N. In what follows we use Lemma 1 without particular reference.
The set multiplication calculation

(aN)(bN) = a(Nb)N = a(bN)N = abNN = abN

shows that the set product (aN)(bN) € G/N. Associativity in G/N follows
directly from associativity in G. The neutral element of G/N is N = eN
since

(aN)N =aNN = aN and N(aN) = NaN =aNN = aN.



Using various descriptions of the set of inverses (aN)™! = N~la7! = Na7! =
a”'N we have (aN)™' =a"'N,

(aN)(aN)™' = (Na)(a™*N) = Naa™*N = NN = N

and
(aN)™'(aN) = (Na™")(aN) = Na~'aN = NN = N.
Therefore (aN)~! € G/N and is a two-sided inverse for aN. We have shown

part (a).
That 7 is a homomorphism and Ker7m = N is easy to see. That G/N =
G /7 now follows by part (b) of Proposition 3. O

5 Normal Subgroups

Let G be group and H < . The condition aH = Ha for all a € G, that is
H < @G, is significant; see Proposition 3.

Theorem 3 Let G be group and H < G. Then the following are equivalent:
(a) The set of left cosets of H is the set of right cosets of H.

For all a € G there exists a b € G such that aH = Hb.

PRrOOF: Part (a) implies part (b). The set of left cosets of H in G partition
G as does the of right cosets. Suppose these sets are the same and let a € G.
Then the left coset aH is a right coset which has the form Hb for some b € G.
Part (b) implies part (c). Assume part (b) is true and let a € G. Then
aH = Hb for some b € G. Now a = ae € aH implies a € Hb. Since
a = ea € Ha the right cosets Hb, Ha are not disjoint. Therefore Hb = Ha.
Part (c) implies part (d) since aH = Ha implies aHa ' = Haa™' = H.
Part (d) implies part (e) since sets are equal if and only if they contain each
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other. Part (e) implies part (f) since aHa™! C H implies aH = (aHa')a C
(H)a = Ha.

Suppose part (f) is true and let @ € G. Then aH C Ha and a 'H C
Ha™'. From the last equation we deduce

Ha=a(a"H)a C a(Ha ')a = aH.

Therefore aH C Ha C aH which means aH = Ha. Thus part (f) implies
part (a). O

By virtue of the preceding theorem there several ways of describing nor-
mal subgroups.



