1. Let G be a group and $H, K \leq G$.

 (a) Suppose that $HK \leq G$ and let $f : H \times K \rightarrow HK$ be defined by $f((h, k)) = hk$ for all $(h, k) \in H \times K$. Show that f is a homomorphism if and only if $hk = kh$ for all $h \in H$ and $k \in K$.

 Suppose in addition that $H, K \nleq G$.

 (b) Show that $HK \nleq G$.

 (c) Suppose that $H \cap K = \{e\}$. Show that $hk = kh$ for all $h \in H$ and $k \in K$ and that the homomorphism of part (b) is an isomorphism. [Hint: For $h \in H$ and $k \in K$ consider $hkh^{-1}k^{-1}$.]

2. Use the theory of finite cyclic groups and induction on $|G|$ to prove Cauchy’s Theorem for abelian groups:

 Theorem 1 Let G be a finite abelian group and suppose that p is a prime integer which divides $|G|$. Then G as an element of order p.
[Hint: Let \(a \in G \) and set \(H = \langle a \rangle \). Then \(|G/H||H| = |G| \).]
3. Let \(G \) be a finite group. For every positive divisor \(d \) of \(|G| \) let \(n_d \) denote the number of cyclic subgroup of \(G \) of order \(d \). Show that

\[
|G| = \sum_{d|\mid |G|} \varphi(d)n_d,
\]

where \(\varphi \) is the Euler phi-function. [Hint: Consider the equivalence relation on \(G \) defined by \(a \sim b \) if and only if \(\langle a \rangle = \langle b \rangle \).]

4. Let \(G \) be a finite group of order \(pqr \), where \(p, q, r \) are primes and \(p < q < r \).

(a) Show that \(G \) is not simple.

(b) Show that \(G \) has a subgroup of prime index.

[Hint: See the text’s discussion of groups of order \(30 = 2 \cdot 3 \cdot 5 \). If needed, you may use the formula of Exercise 3.]

5. Let \(G \) be a finite group of order \(pqr \), where \(p, q, r \) are primes, \(p < q < r \), and \(r \not\equiv 1 \pmod{q} \). Show that \(G \) has a subgroup of index \(p \).