1. Let R be a ring with unity (identity). Show that every element of R is either a unit or a zero divisor if

(a) R is finite or

(b) $R = M_n(k)$, where k is a field.

[Hint: Let $a \in R$ and consider the sequence $1, a, a^2, a^3, \ldots$, noting that its terms belong to a finite set or a finite-dimensional vector space.]

2. Let R be a commutative ring with unity and let N be the set of nilpotent elements of R.

(a) Show that N is an ideal of R. [Hint: Let $a, b \in R$. You may assume that the binomial theorem holds for a, b and that $(ab)^n = a^n b^n$ for all $n \geq 0$.]

(b) Let $U = \{1 + n \mid n \in N\}$. Show that $U \subseteq R^\times$. [Hint: Show that $U = \{1 - n \mid n \in N\}$ also. If $n^\ell = 0$ then $1 - n^\ell = 1$.]

(c) Find a ring with unity whose set of nilpotent elements is not an ideal. Justify your answer. [Hint: Consider $M_2(k)$ where k is a field.]

3. Let R be a commutative ring with unity and set $\mathcal{R} = R[[X]]$.

(a) Show that \(f : \mathcal{R} \rightarrow R \) defined by \(f(\sum_{n=0}^{\infty} a_n X^n) = a_0 \) is a ring homomorphism.

(b) Show that \(\sum_{n=0}^{\infty} a_n X^n \in \mathcal{R}^\times \) if and only if \(a_0 \in R^\times \).

(c) Show that \(\mathcal{R} \) is an integral domain if and only if \(R \) is an integral domain.

4. Let \(R \) be ring with unity.

(a) Suppose that \(I \) is a non-empty family of ideals of \(R \). Show that \(J = \bigcap_{I \in \mathcal{I}} I \) is an ideal of \(R \). (Since \(R \) is an ideal of \(R \), it follows that any \(S \) subset of \(R \) is contained in a smallest ideal of \(R \), namely the intersection of all ideals containing \(S \). This ideal is denoted by \((S) \) and is called the ideal of \(R \) generated by \(S \).)

(b) Suppose that \(R \) is commutative and \(S = \{a_1, \ldots, a_r\} \) is a finite subset of \(R \). Show that \((S) = Ra_1 + \cdots + Ra_r \).

5. Let \(R \) by any ring with unity 1 and \(\mathcal{R} = M_n(R) \). Let \(J \) be an ideal of \(R \).

(a) Show that \(M_n(J) \) is an ideal of \(\mathcal{R} \) and all ideals of \(\mathcal{R} \) have this form.

(b) Show that \(\mathcal{R} \) is simple if and only if \(R \) is simple.

[Hint: For part (a) let \(E_{ij} \in M_n(R) \) be defined by \((E_{ij})_{k\ell} = \delta_{i,k}\delta_{j,\ell} \), where \(\delta_{u,v} = \begin{cases} 1 : u = v \\ 0 : u \neq v \end{cases} \). Work out the formula for \(E_{ij}E_{k\ell} \). Show that any \(A = (A_{uv}) \in M_n(R) \) can be written \(A = \sum_{u,v=1}^{n} A_{uv} E_{uv} \) and consider \(E_{ij}AE_{k\ell} \).]