Math 516 Fall 2006 Radford

Written Homework # 5 Solution

12/12/06

Throughout R s a ring with unity.

Comment: It will become apparent that the module properties 0-m = 0,
—(rm) = (=r)m, and (r — r')-m = r-m — r’-m are vital details in some
problems.

1. (20 total) Let M be an (additive) abelian group and End(M) be the set
of group homomorphisms f: M — M.

(a) (12) Show End(M) is a ring with unity, where (f+g)(m) = f(m)+g(m)
and (fg)(m) = f(g(m)) for all f,g € End(M) and m € M.

Solution: This is rather tedious, but not so unusual as a basic algebra
exercise. The trick is to identify all of the things, large and small, which
need to be verified.

We know that the composition of group homomorphisms is a group
homomorphism. Thus End (M) is closed under function composition.
Moreover End (M) is a monoid since composition is an associative op-
eration and the identity map Ip; of M is a group homomorphism.

Let f,g,h € End (M). The sum f+ g € End (M) since M is abelian as

(f+g9)(m+n) = f(m+n)+glm+n)
= f(m)+ f(n) + g(m) + g(n)
= f(m)+g(m) + f(n) + g(n)
= (f+9)m)+(f+9)n)

for all m,n € M. Thus End (M) is closed under function addition.
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Addition is commutative since f +g =g+ f as (f + g)(m) = f(m) +
gim) = glm) + f(m) = (¢ + f)(m) for all m € M. In a similar
manner one shows that addition is associative which boils down to
((f+9)+h)(m) = (f + (g+ h))(m) for all m € M.

We have seen from group theory that the zero function 0 : M —
M, defined by 0(m) = 0 for all m € M, is a group homomorphism.
Thus 0 € End(M). The zero function serves as a neutral element
for addition since function addition is commutative and f + 0 = f as

(f+0)(m) = f(m)+0(m) = f(m)+0= f(m) for all m € M.
Note that —f : M — M defined by (—f)(m) = —f(m) for all m € M

is a group homomorphism since

(=f)m+n) = -

for all m,n € M. The reader is left to show that —f is an additive
inverse for f. We have finally shown that End (M) is a group under
addition.

To complete the proof that End (M) is a ring with unity we need to
establish the distributive laws. First of all (f+g)oh = foh+goh follows
by definition of function composition and function addition since

((f +g)oh)(m) = (f + g)(h(m))
= f(h(m)) + g(h(m))
= (foh)(m) + (goh)(m)
(foh + goh)(m)

for all m € M. Since f is a group homomorphism the distributive law

fo(g+h) = fog+ foh holds as

(folg +h))(m) = f((g+h)(m))
= flg(m) + h(m))



= flg(m)) + f(h(m))
= (fog)(m) + (foh)(m)
= (fog+ foh)(m)

for all m € M. Therefore End (M) is a ring with unity.

Comment: The proof actually establishes more. For non-empty sets
X,Y let Fun(X,Y") be the set of all functions f: X — Y.

Let M be a non-empty set. Then Fun(M, M) is a monoid under com-
position with neutral element I,;.

Suppose that X is a non-empty set and M is an additive (not necessarily
abelian) group. Then Fun(X, M), in particular Fun(M, M), is a group
under function addition with neutral element the zero map 0 : X —
M defined by 0(x) = 0 for all z € X. Furthermore the distributive law

(f +g)oh = foh + goh

holds for all f, g, h, € Fun(M, M).

Let f € Fun(M, M) be fixed. Then the distributive law fo(g + h) =
fog + foh holds for all g,h € Fun(M, M) if and only if f € End (M).
(To see this let m,n € M and g(xz) = m and h(z) =n for all z € M.)
Observe that End (M) is a submonoid of Fun(M, M) with neutral el-
ement [;. When M is abelian End (M) is a subgroup of Fun(M, M)
under function addition. (In this case End (M) is a ring with unity
under function addition and composition.)

Note that Iy, + Ipy € End (M) if and only if M is abelian. Thus
End (M) is closed under function addition if and only if M is abelian.
Now suppose that M is a left R-module.

(b) (8) For r € R define o, : M — M by o,.(m) = r-m for all m € M.
Show that o, € End(M) for all r € R and 7 : R — End(M) defined
by m(r) = o, for all » € R is a homomorphism of rings with unity.

Solution: Let r € R. for m,n € M the calculation o,(m + n) =
r<(m+mn) =rm+rn=o.(m)+ o.,(n) shows that o, : M — M is
an endomorphism of (additive) groups.
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Let r,r" € R. We have just shown that w(r) = o, € End (M). Note
that 7(r)(m) = o,(m) = r-m for all m € M. Since
m(r+rYm) = (r+r)m
= rm-+ r/.m
= 7(r)(m) +x(r')(m)
= (w(r) +=(")(m)
for all m € M it follows that «(r 4+ r') = w(r) + m(r’). Likewise
w(rr')(m) = (rr')m
= r-(r'-m)
= 7(r)(r'-m)
= 7(r)(=(r')(m))
= (m(r)om(r))(m)
for all m € M shows that m(rr’) = w(r)om(r’). Thus 7 is a ring
homomorphism. Since 7(1)(m) = 1-m = m = Ip;(m) for all m € M we
have (1) = I;. Therefore 7 is a homomorphism of rings with unity.

2. (20 total) Let M be a left R-module. For a non-empty subset S of M
the subset of R defined by

anng(S) ={re R|rs=0 Vse S}

is called the annihilator of S. If S = {s} is a singleton we write anng(s) for
anng({s}).

(a) (8) Suppose that N is a submodule of M. Show that anng(N) is an
ideal of R.

Solution: Let [ = anng (V). Then 0 € I since 0-m = 0 for all m € N.
Thus I # 0. Suppose r,7’ € [ andn € N. Then (r—r')-n =rn—r'-n =
0—0=0since n,—n € N. Thus r —r’ € I which establishes that [ is
an additive subgroup of R. For " € R the calculations

(r'"ryn=7r"-(rm)=r"0=0

and
(rr")n =r-(r"-n) € r-N = (0)

show that r”r,rr” € I. Therefore I is an ideal of R.
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Now suppose m € M is fixed.

(b)

(c)

(6) Show that anng(m) is a left ideal of R.
Solution: The calculations of part (a) establish plart (b).

(6) Let f : R — R-m bedefined by f(r) = r-m for allr € R. Show f is
a homomorphism of left R-modules and F': R/anng(m) — R-m given
by F(r 4+ anng(m)) = r-m for all » € R is a well-defined isomorphism
of left R-modules.

Solution: Let r," € R. Then R-m is a submodule of M (a proof
really is in order) and the calculations

fr+r)y=+r)ym=rm+rm=f(r)+ f(r)

and
Frr') = (') m = (") = ()

show that f is a map of left R-modules. One could appeal to the
Isomorphism Theorems for R-modules to complete the problem; we
will follow the intent of the instructions.

F' is well-defined. Suppose that r,7" € R and r + anng(m) = r’ +
anng(m). Then r — 1" € anng(m) which means (r — 7')-m = 0 or
equivalently r-m = r’-m. Therefore F(r 4+ anng(m)) = r-m =r"-m =
F(r" 4+ anng(m)) which means F' is well-defined. Note that F' and f
are related by F'(r 4+ anng(m)) = f(r) for all r € R.

F' is a module map since

F((r +anng(m)) + (r' + anng(m)))
= F((r+7r'") 4+ anng(m))
= Jr+r)
= f(r)+f0")
= F(r+anng(m)) + F(r' + anng(m))

and
F(r-(r' + anng(m)))
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= F(rr' + anng(m))
= f(rr)
= rf(r)
= r-F(r' +anng(m))

for all v, € R. F is surjective since f is. Since
Ker F' = {r + anng(m)) |r € anng(m))}

is the trivial subgroup of R/anng(m), it follows that the (group) ho-
momorphism F' is injective.

3. (20 total) Let k be a field, V' a vector space over k, and T' € Endy(V)
be a linear endomorphism of V. Then the ring homomorphism 7 : k[X]| —
Endg (V) defined by 7(f(X)) = f(T) for all f(X) € k[X] determines a left
k[X]-module structure on V by f(X)wv = w(f(X))(v) = p(T)(v) for all
velV.

(a) (15) Let W be a non-empty subset of V. Show that W is a k[X]-
submodule of V' if and only if W is a T-invariant subspace of V.

Solution: Suppose that f(X) = oy + -+ + @, X" € k[X]. Then
f(X)v=f(T)v) = (wly +-+a,T")(v) = agv+ - - -+, T"(v) for
allveV.

Let W be a k[X]-submodule. Then W is an additive subgroup of V'
by definition. Let w € W. Since f(X)w = apw when f(X) =
and f(X)w = T(w) when f(X) = X, apw € W for all o € k, which
means that W is a subspace of V', and T'(w) € W, which means that
W is T-invariant (or T-stable).

Conversely, let W be a T-invariant subspace of V. Then T™(W) C W
for all m > 0 by induction on m. Therefore f(X)w € W for allw € W
which means that W is a k[X]-submodule of V.

(b) (5) Suppose that V = k[X]-v is a cyclic k[X]-module. Show that
anngx](V) = (f(X)), where f(X) is the minimal polynomial of 7T'.

Solution: There are various ways of defining the minimal polyno-
mial of 7. One is the unique monic generator of the ideal I of all
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f(X) € k[X] such that f(T") = 0 when I # (0). Otherwise the minimal
polynomial is set to 0 when I = (0). Note that I = annx)(V).

Comment: The condition V is cyclic is not necessary; it was there
anticipating a certain application.

4. (20 total) Let M be a left R-module.

(a) (5) Suppose that N is a non-empty family of submodules of M. Show
that L = Nyen NV is a submodule of M.

Solution: Since submodules are (additive) subgroups, we know from
group theory that L = Nyen NV is a subgroup of M. Let » € R and
n € L. To complete the proof that L is a submodule of M we need
only show that rn € L. Since n € L, n € N for all N € N. Hence
r-n € N forall N € N, since each N is a submodule of M, and therefore
rn € L.

Since M is submodule of M, it follows that any S subset of M is contained
in a smallest submodule of M, namely the intersection of all submodule
containing S. This submodule is denoted by (5) and is called the submodule
of M generated by S.

(b) (5) Let ) # S C M. Show that

(S)={risi+--+rese|€>1,r,....7¢ €R, $1,...,8 €S}

solution: Let
L'={risi+-+mrse|>1,r,....,mi €R, 51,...,8 €S}

Informally we may describe L’ as the set of all finite sums of products
r-s, where r € R and s € S. Now L' C (S). For since S C (S) and
(S) is a submodule of M, products r-s € (S) since (5) is closed under
module multiplication, and thus r1-s1 + - -+ 4+ 145, € (5), by induction
on ¢, for all r1,...,7, € R and sq,...,s, € S since () is closed under
addition.



To complete the proof we need only show (S) C L’. Since s = 1-s for
all s € M it follows that S C L. Thus to show (S) C L’ we need only
show that L’ is a submodule of M. Since S # () and S C L’ it follows
that L' # (.

Suppose that x,y € L’. Then x,y are finite sums of products r-s, where
r € R and s € S; therefore = + y is as well. We have shown x +y € L'.
Since —(r-s) = (—r)-s and ’-(r-s) = ('r)-s for r,r’ € R and s € S, it
follows that —x and r’-x are finite sums of products r”-s”, where " € R
and s” € S. Therefore —z,r-x € L' which completes our proof that L’
is a submodule of M.

Comment: Here are the highlights of a proof of the fact the L’ is a
submodule of M which follows the literal description of L'.

Let z,y € L'. Write x =ry-s1 + -+ +1p-sp and y = ri-s] + -+ + 7Sy,
where £,0' > 1, r,...,1¢,7,...,7p € R, and $1,...,54,81,...,5, € 5.
Thus
/ / / !/
THY=riS1+--+reSp+rS;+ - FrpSy

which means
"N

r+y=rlsl+- s,
where ¢ = ( + (7,

o 1< </
BT M, s t<igty

and

§ — Si D 1<a <
) sl s b<i <40

Thus  +y € L'. Note that
—r = —(rl.sl) . — (TZ'SE) e (—7’1).51 + e _I_ (_TE)'SE c L,
and

rer = 7"'(7"1‘31) _I_ e _|_ T‘(T[S[) = (7"7"1).31 + cee + (TTE)'Sf < L,.

Suppose f, f': M — M’ are R-module homomorphisms.



(c) (5) Show that N = {m € M| f(m) = f'(m)} is a submodule of M.

Solution: First of all 0 € N since f(0) = 0 = f'(0) as f, f are
group homomorphisms. Suppose that m,n € M. Then f(m —n) =
f(m+ (=n)) = f(m) + f(—n) = f(m) — f(n). Thus for m,n € N we
have

f(m—=mn) = f(m) — f(n) = f'(m) — f'(n) = f'(m—n)
which means m —n € N. Therefore N < M. For r € R the calculation
frm)=r-f(m)=r-f'(m)= f'(rm)
shows that r-m € N. Therefore N is a submodule of M.

(d) (5) Suppose that S generates M. Show that f = f’ if and only if
f(s)=f'(s) for all s € S.

Solution: If f = f’' then f(s) = f'(s) for all s € M, hence for all
s € S. Conversely, suppose that f(s) = f'(s) for all s € S and let N
be as in part (a). Then S C N which means M = (S) C N since S
generates M and N is a submodule of M. Therefore M = N which
means f(m) = f'(m) for all m € M, or equivalently f = f’.

Comment: There is no need to invoke part (b) for part (d).

5. (20 total) Use Corollary 2 of “Section 2.3 Supplement” and the equation
of Problem 3 of Written Homework 3 to prove the following:

Theorem 1 Let k be a field and suppose that G is a finite subgroup of k*.
Then G is cyclic.

Solution: A proof is to be based on the equations

Y wld)=mn

for all positive integers n and

Z nd90<d) = |G|

|G|



for all finite groups G. Suppose that H < k> is cyclic of order d. Then
a® = 1, or equivalently a is a root of X¢ —1 € k[X], for all @ € H. This
polynomial has at most d roots in £ since k is a field. Therefore H is the set
of the roots of X% — 1 in k. We have shown that there is at most one cyclic
subgroup of order d in k*.

Now let G < k* be finite. We have shown n; = 0 or ng = 1 for each
positive divisor of |G|. Since ¢(d) > 0 for all positive integers d, from the

equations
> nap(d) =Gl = > o(d) = > 1p(d)
al|G| al|G| al|G|

we deduce that nq = 1 for all positive divisors d of |G|. In particular ng = 1
which means that G has a cyclic subgroup of order |G|; thus G is cyclic.

10



