Throughout \(R \) is a ring with unity.

Comment: It will become apparent that the module properties \(0 \cdot m = 0, - (r m) = (-r) \cdot m \), and \((r - r') \cdot m = r \cdot m - r' \cdot m \) are vital details in some problems.

1. \((20 \text{ total})\) Let \(M \) be an (additive) abelian group and \(\text{End}(M) \) be the set of group homomorphisms \(f : M \rightarrow M \).

(a) \((12)\) Show \(\text{End}(M) \) is a ring with unity, where \((f + g)(m) = f(m) + g(m) \) and \((fg)(m) = f(g(m)) \) for all \(f, g \in \text{End}(M) \) and \(m \in M \).

Solution: This is rather tedious, but not so unusual as a basic algebra exercise. The trick is to identify all of the things, large and small, which need to be verified.

We know that the composition of group homomorphisms is a group homomorphism. Thus \(\text{End}(M) \) is \textit{closed} under function composition. Moreover \(\text{End}(M) \) is a monoid since composition is an associative operation and the identity map \(I_M \) of \(M \) is a group homomorphism.

Let \(f, g, h \in \text{End}(M) \). The sum \(f + g \in \text{End}(M) \) since \(M \) is \textit{abelian} as

\[
(f + g)(m + n) = f(m + n) + g(m + n) \\
= f(m) + f(n) + g(m) + g(n) \\
= f(m) + g(m) + f(n) + g(n) \\
= (f + g)(m) + (f + g)(n)
\]

for all \(m, n \in M \). Thus \(\text{End}(M) \) is \textit{closed} under function addition.
Addition is commutative since \(f + g = g + f \) as \((f + g)(m) = f(m) + g(m) = g(m) + f(m) = (g + f)(m)\) for all \(m \in M\). In a similar manner one shows that addition is associative which boils down to \(((f + g) + h)(m) = (f + (g + h))(m)\) for all \(m \in M\).

We have seen from group theory that the zero function \(0 : M \rightarrow M\), defined by \(0(m) = 0\) for all \(m \in M\), is a group homomorphism. Thus \(0 \in \text{End}(M)\). The zero function serves as a neutral element for addition since function addition is commutative and \(f + 0 = f\) as \((f + 0)(m) = f(m) + 0(m) = f(m) + 0 = f(m)\) for all \(m \in M\).

Note that \(-f : M \rightarrow M\) defined by \((-f)(m) = -f(m)\) for all \(m \in M\) is a group homomorphism since

\[
(-f)(m + n) = -(f(m + n)) = -(f(m) + f(n)) = (-f(n)) + (-f(m)) = (-f(m)) + (-f(n)) = (-f)(m) + (-f)(n)
\]

for all \(m, n \in M\). The reader is left to show that \(-f\) is an additive inverse for \(f\). We have finally shown that \(\text{End}(M)\) is a group under addition.

To complete the proof that \(\text{End}(M)\) is a ring with unity we need to establish the distributive laws. First of all \(((f + g) \circ h)(m) = (f + g)(h(m))\) follows by definition of function composition and function addition since

\[
((f + g) \circ h)(m) = (f + g)(h(m)) = f(h(m)) + g(h(m)) = (f \circ h)(m) + (g \circ h)(m) = (f \circ h + g \circ h)(m)
\]

for all \(m \in M\). Since \(f\) is a group homomorphism the distributive law \(f \circ (g + h) = f \circ g + f \circ h\) holds as

\[
(f \circ (g + h))(m) = f((g + h)(m)) = f(g(m) + h(m))
\]
\[
\begin{align*}
&= f(g(m)) + f(h(m)) \\
&= (f \circ g)(m) + (f \circ h)(m) \\
&= (f \circ g + f \circ h)(m)
\end{align*}
\]

for all \(m \in M \). Therefore \(\text{End}(M) \) is a ring with unity.

Comment: The proof actually establishes more. For non-empty sets \(X, Y \) let \(\text{Fun}(X, Y) \) be the set of all functions \(f : X \to Y \).

Let \(M \) be a non-empty set. Then \(\text{Fun}(M, M) \) is a monoid under composition with neutral element \(I_M \).

Suppose that \(X \) is a non-empty set and \(M \) is an additive (not necessarily abelian) group. Then \(\text{Fun}(X, M) \), in particular \(\text{Fun}(M, M) \), is a group under function addition with neutral element the zero map \(0 : X \to M \) defined by \(0(x) = 0 \) for all \(x \in X \). Furthermore the distributive law

\[
(f + g) \circ h = f \circ h + g \circ h
\]

holds for all \(f, g, h, \in \text{Fun}(M, M) \).

Let \(f \in \text{Fun}(M, M) \) be fixed. Then the distributive law \(f \circ (g + h) = f \circ g + f \circ h \) holds for all \(g, h \in \text{Fun}(M, M) \) if and only if \(f \in \text{End}(M) \).

(To see this let \(m, n \in M \) and \(g(x) = m \) and \(h(x) = n \) for all \(x \in M \).)

Observe that \(\text{End}(M) \) is a submonoid of \(\text{Fun}(M, M) \) with neutral element \(I_M \). When \(M \) is abelian \(\text{End}(M) \) is a subgroup of \(\text{Fun}(M, M) \) under function addition. (In this case \(\text{End}(M) \) is a ring with unity under function addition and composition.)

Note that \(I_M + I_M \in \text{End}(M) \) if and only if \(M \) is abelian. Thus \(\text{End}(M) \) is closed under function addition if and only if \(M \) is abelian.

Now suppose that \(M \) is a left \(R \)-module.

(b) (8) For \(r \in R \) define \(\sigma_r : M \to M \) by \(\sigma_r(m) = r \cdot m \) for all \(m \in M \).

Show that \(\sigma_r \in \text{End}(M) \) for all \(r \in R \) and \(\pi : R \to \text{End}(M) \) defined by \(\pi(r) = \sigma_r \) for all \(r \in R \) is a homomorphism of rings with unity.

Solution: Let \(r \in R \). For \(m, n \in M \) the calculation \(\sigma_r(m + n) = r \cdot (m + n) = r \cdot m + r \cdot n = \sigma_r(m) + \sigma_r(n) \) shows that \(\sigma_r : M \to M \) is an endomorphism of (additive) groups.
Let \(r, r' \in R \). We have just shown that \(\pi(r) = \sigma_r \in \text{End}(M) \). Note that \(\pi(r)(m) = \sigma_r(m) = r \cdot m \) for all \(m \in M \). Since
\[
\pi(r + r')(m) = (r + r') \cdot m = r \cdot m + r' \cdot m = \pi(r)(m) + \pi(r')(m) = (\pi(r) + \pi(r'))(m)
\]
for all \(m \in M \) it follows that \(\pi(r + r') = \pi(r) + \pi(r') \). Likewise
\[
\pi(rr')(m) = (rr') \cdot m = r \cdot (r' \cdot m) = \pi(r)(\pi(r')(m)) = (\pi(r) \circ \pi(r'))(m)
\]
for all \(m \in M \) shows that \(\pi(rr') = \pi(r) \circ \pi(r') \). Thus \(\pi \) is a ring homomorphism. Since \(\pi(1)(m) = 1 \cdot m = m = I_M(m) \) for all \(m \in M \) we have \(\pi(1) = I_M \). Therefore \(\pi \) is a homomorphism of rings with unity.

2. \textbf{(20 total)} Let \(M \) be a left \(R \)-module. For a non-empty subset \(S \) of \(M \) the subset of \(R \) defined by
\[
\text{ann}_R(S) = \{ r \in R \mid r \cdot s = 0 \ \forall s \in S \}
\]
is called the \textit{annihilator} of \(S \). If \(S = \{s\} \) is a singleton we write \(\text{ann}_R(s) \) for \(\text{ann}_R(\{s\}) \).

(a) \textbf{(8)} Suppose that \(N \) is a submodule of \(M \). Show that \(\text{ann}_R(N) \) is an ideal of \(R \).

\textbf{Solution}: Let \(I = \text{ann}_R(N) \). Then \(0 \in I \) since \(0 \cdot m = 0 \) for all \(m \in N \). Thus \(I \neq \emptyset \). Suppose \(r, r' \in I \) and \(n \in N \). Then \((r-r') \cdot n = r \cdot n - r' \cdot n = 0 - 0 = 0 \) since \(n, -n \in N \). Thus \(r - r' \in I \) which establishes that \(I \) is an additive subgroup of \(R \). For \(r'' \in R \) the calculations
\[
(r''r) \cdot n = r'' \cdot (r \cdot n) = r'' \cdot 0 = 0
\]
and
\[
(rr'') \cdot n = r \cdot (r'' \cdot n) \in r \cdot N = (0)
\]
show that \(r''r, rr'' \in I \). Therefore \(I \) is an ideal of \(R \).
Now suppose \(m \in M \) is fixed.

(b) \((6)\) Show that \(\text{ann}_R(m) \) is a left ideal of \(R \).

Solution: The calculations of part (a) establish part (b).

(c) \((6)\) Let \(f : R \longrightarrow R \cdot m \) be defined by \(f(r) = r \cdot m \) for all \(r \in R \). Show \(f \) is a homomorphism of left \(R \)-modules and \(F : R/\text{ann}_R(m) \longrightarrow R \cdot m \) given by \(F(r + \text{ann}_R(m)) = r \cdot m \) for all \(r \in R \) is a well-defined isomorphism of left \(R \)-modules.

Solution: Let \(r, r' \in R \). Then \(R \cdot m \) is a submodule of \(M \) (a proof really is in order) and the calculations

\[
f(r + r') = (r + r') \cdot m = r \cdot m + r' \cdot m = f(r) + f(r')
\]

and

\[
f(rr') = (rr') \cdot m = r \cdot (r' \cdot m) = r \cdot f(r')
\]

show that \(f \) is a map of left \(R \)-modules. One could appeal to the Isomorphism Theorems for \(R \)-modules to complete the problem; we will follow the intent of the instructions.

\(F \) is well-defined. Suppose that \(r, r' \in R \) and \(r + \text{ann}_R(m) = r' + \text{ann}_R(m) \). Then \(r - r' \in \text{ann}_R(m) \) which means \((r - r') \cdot m = 0 \) or equivalently \(r \cdot m = r' \cdot m \). Therefore \(F(r + \text{ann}_R(m)) = r \cdot m = r' \cdot m = F(r' + \text{ann}_R(m)) \) which means \(F \) is well-defined. Note that \(F \) and \(f \) are related by \(F(r + \text{ann}_R(m)) = f(r) \) for all \(r \in R \).

\(F \) is a module map since

\[
F((r + \text{ann}_R(m)) + (r' + \text{ann}_R(m)))
= F((r + r') + \text{ann}_R(m))
= f(r + r')
= f(r) + f(r')
= F(r + \text{ann}_R(m)) + F(r' + \text{ann}_R(m))
\]

and

\[
F(r \cdot (r' + \text{ann}_R(m)))
\]
\[F(r'r' + \text{ann}_R(m)) = f(r'r') = r'F(r' + \text{ann}_R(m)) \]

for all \(r, r' \in R \). \(F \) is surjective since \(f \) is. Since \(\ker F = \{ r + \text{ann}_R(m) \mid r \in \text{ann}_R(m) \} \) is the trivial subgroup of \(R/\text{ann}_R(m) \), it follows that the (group) homomorphism \(F \) is injective.

3. (20 total) Let \(k \) be a field, \(V \) a vector space over \(k \), and \(T \in \text{End}_k(V) \) be a linear endomorphism of \(V \). Then the ring homomorphism \(\pi : k[X] \rightarrow \text{End}_k(V) \) defined by \(\pi(f(X)) = f(T) \) for all \(f(X) \in k[X] \) determines a left \(k[X] \)-module structure on \(V \) by \(f(X) \cdot v = \pi(f(X))(v) = p(T)(v) \) for all \(v \in V \).

(a) (15) Let \(W \) be a non-empty subset of \(V \). Show that \(W \) is a \(k[X] \)-submodule of \(V \) if and only if \(W \) is a \(T \)-invariant subspace of \(V \).

Solution: Suppose that \(f(X) = \alpha_0 + \cdots + \alpha_nX^n \in k[X] \). Then \(f(X) \cdot v = f(T)(v) = (\alpha_0 I_V + \cdots + \alpha_n T^n)(v) = \alpha_0 v + \cdots + \alpha_n T^n(v) \) for all \(v \in V \). Let \(W \) be a \(k[X] \)-submodule. Then \(W \) is an additive subgroup of \(V \) by definition. Let \(w \in W \). Since \(f(X) \cdot w = \alpha_0 w \) when \(f(X) = \alpha_0 \) and \(f(X) \cdot w = T(w) \) when \(f(X) = X \), \(\alpha_0 w \in W \) for all \(\alpha_0 \in k \), which means that \(W \) is a subspace of \(V \), and \(T(w) \in W \), which means that \(W \) is \(T \)-invariant (or \(T \)-stable).

Conversely, let \(W \) be a \(T \)-invariant subspace of \(V \). Then \(T^m(W) \subseteq W \) for all \(m \geq 0 \) by induction on \(m \). Therefore \(f(X) \cdot w \in W \) for all \(w \in W \) which means that \(W \) is a \(k[X] \)-submodule of \(V \).

(b) (5) Suppose that \(V = k[X] \cdot v \) is a cyclic \(k[X] \)-module. Show that \(\text{ann}_{k[X]}(V) = (f(X)) \), where \(f(X) \) is the minimal polynomial of \(T \).

Solution: There are various ways of defining the minimal polynomial of \(T \). One is the unique monic generator of the ideal \(I \) of all
\(f(X) \in k[X] \) such that \(f(T) = 0 \) when \(I \neq (0) \). Otherwise the minimal polynomial is set to 0 when \(I = (0) \). Note that \(I = \text{ann}_{k[X]}(V) \).

Comment: The condition \(V \) is cyclic is not necessary; it was there anticipating a certain application.

4. (20 total) Let \(M \) be a left \(R \)-module.

(a) (5) Suppose that \(\mathcal{N} \) is a non-empty family of submodules of \(M \). Show that \(L = \bigcap_{N \in \mathcal{N}} N \) is a submodule of \(M \).

Solution: Since submodules are (additive) subgroups, we know from group theory that \(L = \bigcap_{N \in \mathcal{N}} N \) is a subgroup of \(M \). Let \(r \in R \) and \(n \in L \). To complete the proof that \(L \) is a submodule of \(M \) we need only show that \(r \cdot n \in L \). Since \(n \in L \), \(n \in N \) for all \(N \in \mathcal{N} \). Hence \(r \cdot n \in N \) for all \(N \in \mathcal{N} \), since each \(N \) is a submodule of \(M \), and therefore \(r \cdot n \in L \).

Since \(M \) is submodule of \(M \), it follows that any \(S \) subset of \(M \) is contained in a smallest submodule of \(M \), namely the intersection of all submodule containing \(S \). This submodule is denoted by \((S) \) and is called the submodule of \(M \) generated by \(S \).

(b) (5) Let \(\emptyset \neq S \subseteq M \). Show that

\[(S) = \{r_1 \cdot s_1 + \cdots + r_{\ell} \cdot s_{\ell} \mid \ell \geq 1, r_1, \ldots, r_{\ell} \in R, s_1, \ldots, s_{\ell} \in S\} \]

Solution: Let

\[L' = \{r_1 \cdot s_1 + \cdots + r_{\ell} s_{\ell} \mid \ell \geq 1, r_1, \ldots, r_{\ell} \in R, s_1, \ldots, s_{\ell} \in S\} \]

Informally we may describe \(L' \) as the set of all finite sums of products \(r \cdot s \), where \(r \in R \) and \(s \in S \). Now \(L' \subseteq (S) \). For since \(S \subseteq (S) \) and \((S) \) is a submodule of \(M \), products \(r \cdot s \in (S) \) since \((S) \) is closed under module multiplication, and thus \(r_1 \cdot s_1 + \cdots + r_{\ell} s_{\ell} \in (S) \), by induction on \(\ell \), for all \(r_1, \ldots, r_{\ell} \in R \) and \(s_1, \ldots, s_{\ell} \in S \) since \((S) \) is closed under addition.
To complete the proof we need only show \((S) \subseteq L'\). Since \(s = 1 \cdot s\) for all \(s \in M\) it follows that \(S \subseteq L'\). Thus to show \((S) \subseteq L'\) we need only show that \(L'\) is a submodule of \(M\). Since \(S \neq \emptyset\) and \(S \subseteq L'\) it follows that \(L' \neq \emptyset\).

Suppose that \(x, y \in L'\). Then \(x, y\) are finite sums of products \(r \cdot s\), where \(r \in R\) and \(s \in S\); therefore \(x + y\) is as well. We have shown \(x + y \in L'\). Since \(- (r \cdot s) = (r') \cdot (r \cdot s)\) for \(r, r' \in R\) and \(s \in S\), it follows that \(-x\) and \(r' \cdot x\) are finite sums of products \(r'' \cdot s''\), where \(r'' \in R\) and \(s'' \in S\). Therefore \(-x, r \cdot x \in L'\) which completes our proof that \(L'\) is a submodule of \(M\).

\textit{Comment:} Here are the highlights of a proof of the fact the \(L'\) is a submodule of \(M\) which follows the literal description of \(L'\).

Let \(x, y \in L'\). Write \(x = r_1 \cdot s_1 + \cdots + r_\ell \cdot s_\ell\) and \(y = r'_1 \cdot s'_1 + \cdots + r'_{\ell'} \cdot s'_{\ell'}\), where \(\ell, \ell' \geq 1\), \(r_1, \ldots, r_\ell, r'_1, \ldots, r'_{\ell'} \in R\), and \(s_1, \ldots, s_\ell, s'_1, \ldots, s'_{\ell'} \in S\). Thus

\[x + y = r_1 \cdot s_1 + \cdots + r_\ell \cdot s_\ell + r'_1 \cdot s'_1 + \cdots + r'_{\ell'} \cdot s'_{\ell'}\]

which means

\[x + y = r''_1 \cdot s''_1 + \cdots + r''_{\ell''} \cdot s''_{\ell''}\]

where \(\ell'' = \ell + \ell'\),

\[r''_i = \begin{cases} r_i & : 1 \leq i \leq \ell \\ r'_{i - \ell} & : \ell < i \leq \ell + \ell' \end{cases}\]

and

\[s''_i = \begin{cases} s_i & : 1 \leq i \leq \ell \\ s'_{i - \ell} & : \ell < i \leq \ell + \ell' \end{cases}\]

Thus \(x + y \in L'\). Note that

\[-x = -(r_1 \cdot s_1) - \cdots - (r_\ell \cdot s_\ell) = (-r_1) \cdot s_1 + \cdots + (-r_\ell) \cdot s_\ell \in L'\]

and

\[r \cdot x = r \cdot (r_1 \cdot s_1) + \cdots + r \cdot (r_\ell \cdot s_\ell) = (rr_1) \cdot s_1 + \cdots + (rr_\ell) \cdot s_\ell \in L'.\]

Suppose \(f, f' : M \rightarrow M'\) are \(R\)-module homomorphisms.
(c) (5) Show that \(N = \{m \in M \mid f(m) = f'(m)\} \) is a submodule of \(M \).

Solution: First of all \(0 \in N \) since \(f(0) = 0 = f'(0) \) as \(f, f' \) are group homomorphisms. Suppose that \(m, n \in M \). Then \(f(m - n) = f(m + (-n)) = f(m) + f(-n) = f(m) - f(n) \). Thus for \(m, n \in N \) we have

\[
f(m - n) = f(m) - f(n) = f'(m) - f'(n) = f'(m - n)
\]

which means \(m - n \in N \). Therefore \(N \leq M \). For \(r \in R \) the calculation

\[
f(r \cdot m) = r \cdot f(m) = r \cdot f'(m) = f'(r \cdot m)
\]

shows that \(r \cdot m \in N \). Therefore \(N \) is a submodule of \(M \).

(d) (5) Suppose that \(S \) generates \(M \). Show that \(f = f' \) if and only if \(f(s) = f'(s) \) for all \(s \in S \).

Solution: If \(f = f' \) then \(f(s) = f'(s) \) for all \(s \in M \), hence for all \(s \in S \). Conversely, suppose that \(f(s) = f'(s) \) for all \(s \in S \) and let \(N \) be as in part (a). Then \(S \subseteq N \) which means \(M = (S) \subseteq N \) since \(S \) generates \(M \) and \(N \) is a submodule of \(M \). Therefore \(M = N \) which means \(f(m) = f'(m) \) for all \(m \in M \), or equivalently \(f = f' \).

Comment: There is no need to invoke part (b) for part (d).

5. **(20 total)** Use Corollary 2 of “Section 2.3 Supplement” and the equation of Problem 3 of Written Homework 3 to prove the following:

Theorem 1 Let \(k \) be a field and suppose that \(G \) is a finite subgroup of \(k^\times \). Then \(G \) is cyclic.

Solution: A proof is to be based on the equations

\[
\sum_{d|n} \varphi(d) = n
\]

for all positive integers \(n \) and

\[
\sum_{d | |G|} n_d \varphi(d) = |G|
\]
for all finite groups G. Suppose that $H \leq k^\times$ is cyclic of order d. Then $a^d = 1$, or equivalently a is a root of $X^d - 1 \in k[X]$, for all $a \in H$. This polynomial has at most d roots in k since k is a field. Therefore H is the set of the roots of $X^d - 1$ in k. We have shown that there is at most one cyclic subgroup of order d in k^\times.

Now let $G \leq k^\times$ be finite. We have shown $n_d = 0$ or $n_d = 1$ for each positive divisor of $|G|$. Since $\varphi(d) > 0$ for all positive integers d, from the equations

$$\sum_{d \mid |G|} n_d \varphi(d) = |G| = \sum_{d \mid |G|} \varphi(d) = \sum_{d \mid |G|} 1 \varphi(d)$$

we deduce that $n_d = 1$ for all positive divisors d of $|G|$. In particular $n_{|G|} = 1$ which means that G has a cyclic subgroup of order $|G|$; thus G is cyclic.