1. Suppose that G is a finite group with subgroups H, K. Prove that if $|H|$ and $|K|$ are relatively prime then $H \cap K = \langle e \rangle$.

2. Let $f : G \rightarrow G$ be a group homomorphism, let S be a non-empty subset of G and suppose that $f(S) \subseteq \langle S \rangle$. Show that $f(\langle S \rangle) \subseteq f(\langle S \rangle)$.

3. The group $\text{GL}_2(\mathbb{R})$ of 2×2 invertible matrices with coefficients in the real numbers \mathbb{R} acts on $A = \mathbb{R}^2$ by $g \cdot v = gv$ for $g \in G$ and $v \in A$. Let $G = \left\{ \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix} \mid b \in \mathbb{Q} \right\}$.
 a) Show that G is a subgroup of $\text{GL}_2(\mathbb{R})$.
 b) Show that the G-orbits of A have the form $L_y = \left\{ \begin{pmatrix} 0 \\ y \end{pmatrix} \right\}$, where $y \in \mathbb{R}$, or $U_x = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \right\}$, where $x \in \mathbb{R} \setminus 0$.

4. Let $G = S_6$, $\sigma = (1 \ 3 \ 2 \ 5)(4 \ 1 \ 6) \in G$ and $H = \langle \sigma \rangle$.
 a) List all of the elements of H as products of disjoint cycles.
 b) Show that H is not a normal subgroup of G. [Hint: Consider $\tau \sigma \tau^{-1}$, where τ has order 3.]
 c) Let $\tau = (1 \ 5)(2 \ 6)(3 \ 4)$. Show that $\tau \sigma \tau^{-1} \in H$. [Thus $\tau \in N_G(H)$ by Problem 2.]
 d) Show that 12 divides $|N_G(H)|$.

5. Let G be a group of order 3·5·19.
 a) Show that G has a unique subgroup of order 5 and a unique subgroup of order 19.
 b) Show that G has a subgroup of index 3. [Hint: You may use the fact that if $H, K \leq G$ and $H \leq G$ then $HK \leq G$.]