Math 516 Fall 2008 Radford

Written Homework # 2 Solution

10/09/08

1. (20 points) The challenge of part (a) is not to fall asleep. A part of basic algebra is checking
mundane details. Let f,g,h € G.

(a) (9 pts) Let i € I. Since the binary operation in G; is associative

(fo)n)(@) = ((fg9)(@))h(i)
= (f(2)g(i))h(i)
= f()(g(0)h(2))
= f()((gh)(i))
= (f(gh))(@).
We have shown that (fg)h = f(gh).
Let e; be the identity element of G; for all i € and define e € G by e(i) = e; for all i € I. Then
(fe)(i) = f(i)e(i) = f(i)e; = f(i) = eif (i) = (ef)(3)
for all 7 € I means that fe = f = ef. Thus e is an identity element for G.
Define f' € G by f'(i) = f(i)~! for all i € I. The calculations
(Ff)@) = @) (1) = F) f() 7" = e = e(d)
and
(f D) = f@)f0) = f)7 fi) = e = e(d)
show that ff" = e = f’f. Therefore f has an inverse which is f’.

(b) (11 pts) Tables for finite groups have the property that each element of the group must appear
exactly once in each row and in each column (cancellation property). We may write G = {e, a, b, c},
where e is the identity element of G.

e a b
ele a b
Case 1: 2> = e for all z € G. Then the table looks like a | a e We are forced to fill in
b|b e
clc - e
e a b e a b e a b ¢
ele a b ele a b ele a b c
the columns (left to right) a |a e - ala e ¢ ala e ¢ b
b|lb ¢ e b|lb ¢ e b|b ¢ e a
clc b e clc b a e clc b a e




e a b ¢
e|le a b c
Thus the table must be a |a e ¢ b
b|lb ¢ e a
c|lc b a e
ZyxZy realizes the table. Let x = (1,0) and y = (0,1). Set z =2 +y = (1,1) and 0 = (0,0).
0 x y z
010 x y =z
Then the table for ZoxZsis x |x 0 =z y Thus f: ZyxZy — G given by
yviy z 0 x
z |z y x 0

is an isomorphism of groups.

Case 2: x* # e for some z € G. We may assume a®> = b # e (Why?) Thus the table looks like

e a b c e a b c
ele a b c ele a b ¢
ala b - - The second row and second column must be filledin a |a b ¢ e which
b|b b|b ¢
c|c clc e
e a b c e a b c e a b c
ele a b c ele a b c ele a b ¢
forces ala b ¢ e and a|a b ¢ e Thusthetableis a |a b ¢ e The table for
b|b ¢ e blb ¢ e a blb ¢ e a
clc e a - clc e a b clc e a b
0 1 2 3
00 1 2 3
Zyisgivenby 1|1 2 3 0 Thus f:Zs — G given by
212 3 0 1
313 0 1 2

is an isomorphism.

2. (20 points) The condition a* = e for all a € G is equivalent to a = a™! for all a € G.
(a) (7 pts) Let a,b € G. From abab = (ab)? = e we deduce ab = b"ta™! = ba.

(b) (13 pts) If |G| = 1,2 we are done.

Note: The condition 0 < ¢ < n should have been 0 < i < n.
Suppose |G| > 2. Since G is abelian G is not simple; else, since all subgroups of G are normal
by part (a), G is cyclic and G ~ Zy as G = <a> for some a € G and a® = e. Therefore there is a
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(normal) subgroup H of G which satisfies (e) # H # G. Since G is finite there is a maximal such
subgroup which we call, by slight abuse of notation, H as well.

JFrom |G| = |G/H||H| we now conclude that 1 < |G/H|,|H| < |G|. By the Fourth Isomorphism
Theorem G/H is simple. Thus G/H is cyclic of order 2, by our argument above, which means
|G : H| =2.

By induction on |G| there is an m > 0 and a chain of subgroups (¢) = HC H; C---C H,, = H
such that |H; : H;y| =2 for all 0 <i < m. Set n = m+ 1 and G = H,. Thus our conclusion
follows by induction on |G]|.

3. (15 points) Let a € G. Then a € S for a unique S € G since G partitions G. Therefore
7w : G — G given by m(a) = S is a well-defined function.

Now suppose b € G and let T' € G satisfy b € T. Then ab € ST and ST € G by assumption.
Therefore 7(ab) = ST = m(a)w(b) which means that 7 is a group homomorphism.

Suppose N € G satisfies e € N. Then N = 7(e) is the neutral element of G. As

S=r1{SY) =7'{r(a)}) = a(ker 7) = (ker 7)a

and N = 71 ({N}) = ker 7 we conclude that S = aN = Na.
4. (20 points)
(a) (5 pts) e € H as f(e) =€ = g(e); thus H # (). Let a,b € H. The calculation

flab™) = fla)f(b~") = fla)f(b)"" = g(a)g(b)~" = g(a)g(b~") = g(ab™")
shows that ab~' € H. Therefore H < G.

(b) (5 pts) Only if. Suppose f = g. Then f(a) = g(a) for all a € G in particular f(s) = g(s) for
all s € S. If: Suppose that f(s) = g(s) for all s € S. Then S C H and consequently <S> C H
since the latter is a subgroup of G. Therefore G = <S> C H(C G) from which G = H follows. We
have shown that f(a) = g(a) for all a € G, or equivalently f = g.

(c) (5 pts) First of all suppose that S is any subset of G and a € G satisfies sa = as for all s € S.
Then S C Cg({a}) which means <S> C Cg({a}) since the latter is a subgroup of G.

Now let S, T be as in part (c) and let t € 7. Since st =ts for all s € S, H = <S> C Cq({t}).
We have shown ht = th for all h € H.

Now let h € H. Then T' C Cg({h}) and thus K = <T> C Cg({h}). Therefore hk = kh for all
keK.

(d) (5 pts) By part (¢) HK = KH and therefore HK < G. Let a,a’ € HK. Then a = hk and
a’ = h'k' for some h,h' € H and k, k" € K. Therefore

aa' = hkh'K' = hkK' = W'hk'k = W'E'hk = d'a

which shows that H K is commutative.

5. (25 points) For a € G, where G is a finite group, recall that the order of a, denoted |a|, is the
least positive integer n satisfying a™ = e and |a| = |<a>|.
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(a) (5 pts) (ab)™ = a™b™ = eb™. Thus <b™> C <ab>. Since <b™> = <b™M> = <b> by
Lagrange’s Theorem m||<ab>|. Since ba = ab and (n,m) = 1, we conclude n||<ab>|. Thus
mnl||<ab>| since (m,n) = 1. The calculation (ab)”™" = a™"b™" = (a™)"(b")™ = €"e™ = e shows
that |<ab>||mn. Therefore mn = |<ab>| = |ab|.

(b) (5 pts) The possible orders of elements of G are 1, 2, 3, or 6 since |G| = 6. We will show that
2?2 =efor all x € G or 2° = e for all x € G are not possible.

2? = e for all z € G is ruled out by Problem 2 since |G| # 2" for all n > 0. Suppose
2% = e for all z € G. Then G has different subgroups H, K of order 3. Since HNK = H implies
H C K and consequently H = K, HNK # K. By Lagrange’s Theorem HNK = (e). Thus
|G| > |HK| = |H||K|/|[HNK| =9 > |G|, a contradiction. Thus z* = e for all z € G is ruled out.

Since |G| # 2" for all n > 0, by Problem 2, a? # e for some a € G. Thus G has an element of
order 3 or 6. In the latter case G ~ Zg. Thus we may assume that GG has an element a of order 3.

Our conclusion: either G has an element of order 6 or elements a, b of orders 2 and 3 respectively.
By part (a) the product ab has order 6. Thus G has an element of order 6 which means G ~ Zg.

(c) (5 pts) Observe that Z(G) = (e) since G is non-abelian. Otherwise Z(G) has order 2 or 3 by
Lagrange’s Theorem. Since |G| = 6, by the same if L < G and Z(G) C L then L = Z(G) or L = G.
Since G is not abelian there ia a a /nZ(G). By Problem 4 L = <a>Z(G) is an abelian subgroup of
G which properly contains Z(G). Thus L = G, a contradiction. W have Shown Z(G) = (e).

The class equation reduces to 6 = 1 4 £2 + m3 + n6 for some ¢, m,n > 0. Therefore / =m =1
and n = 0.

(d) (5 pts) More generally, suppose that G is any group and H = <a> < G has 2 elements. Let
g € G. Then {e,a} = H = gHg™ ' = {geg™!,gag™} = {e,gag™'} means gag~' = a. Therefore
a € Z(G) which means H C Z(G).

Since Z(G) = (e) for our particular G, which wasshown for part (c¢), H is not normal.

(e) (5 pts) Note that Kerm C H. Since |H| = 2 either Kerm = (e) or kerm = H. As Ker7 is a
normal subgroup of G and, by part (d), H is not, Kerm = (e). Therefore 7 is injective and thus
bijective since |G| = 6 = |S4].



