Math 516 Fall 2008 Radford

Written Homework # 3 Solution

12/01/08

Here is the basis for a solution to the first two problems.

Lemma 1 Suppose G is a group, p is a positive prime, and G has s cyclic subgroups of order p.
Then the number of elements of G of order p is s(p — 1).

PrROOF: Suppose that Hi,..., Hy are the subgroups of order p. Then the non-identity elements
of these subgroups account for the elements of G of order p by Lagrange’s Theorem. Suppose
H,NH; # (e). Choose e # a € H;NH;. Then a € H;, H; and has order p. Thus H; = (a) = H;.
Consequently Hi\{e}U---UH,\{e} describes a partition of the elements of G of order p. O

For a finite group G and positive prime p we let n, denote the number of Sylow p-subgroups of
G. If |G| = p"m, where n > 1 and (m,p) = 1, then n, = 1 + kp for some non-negative integer k
and n, | |G|. Thus n,|m.

There is a corollary to the proof of the lemma which is stated here for the record. It is general-
ization of the lemma.

Corollary 1 Suppose G is a group, d is a positive integer, and G has ng cyclic subgroups of order
d. Then the number of elements of G of order d is ngp(d), were ¢ is the Euler phi-function. O

1. (20 points) Most of the basic details are taken care of by Lemma 1. Since p,q divide |G|
it follows by the Sylow Theorems that n,,n, > 1. Suppose that no Sylow g-subgroup is normal.
Then n, > 1 which means n, = 1 + ¢ = p". The number of elements in G of order ¢ is therefore
ng(q—1) =p"(¢—1) =p"q —p" = |G| — p" by Lemma 1.

Let S C G be the subset of all elements which do not have order ¢q. Then |S| = p™. Let P be
a Sylow p-subgroup of G. Then elements of P have order p’ for some 0 < ¢ < n. Therefore P CS
which means P = S since |S| = p™ = |P|. Thus P is the only Sylow p-subgroup of G which means
that P is normal. We have shown that G is not simple.

2. (20 points) We may assume p < ¢ < r. Assume that G is simple. Then n,,n,4,n, > 1. Since
np|qr, nglpr, and n,|pq it follows that n, > ¢, n, > r and n, = pg. The number of elements of
orders p, g, and r respectively account for

C=n,(p—1)+ng(qg—1) +n(r—1)>qp—1)+r(g—1)+pg(r —1) =pgr —q—r+rq.



Now 1/¢+1/r < 1 as 2 < p < ¢ < r. Therefore 0 < —r — q + rq. We have shown that
|G| > ¢ > |G| —q—r+qr > |G|, a contradiction. Therefore G is not simple (indeed one of its
Sylow subgroups is normal).

3. (20 points) Since p | |G| there is a Sylow p-subgroup for G. Let e # a € G. Since |G| is a power
of p it follows that (a) as order a power of p by Lagrange’s Theorem. By the theory of cyclic groups
(a) contains an element of order p.

4. (20 points) By assumption |G : H| < n — 1. Let A be the set of left cosets of H in G = 5,
and let 7 : G — S, be the group homomorphism defined by 7(g)(aH) = gaH for all g € G and
aH € A. Recall that Kerm C H. Since |G| = n! and |S4| = |G : H|! < (n — 1)! it follows that 7 is
not injective. Therefore Ker m # (e).

Note that ker 1NA,, is a normal subgroup of A,,. Since n > 5 the group A, is simple. Therefore
ker 1NA,, = A, or kertNA, = (e).

Suppose that ker 71NA, = A,. Then A, C Kerm C H. Since |G : H| < |G : A,| = 2 it follows
that |G : H| = 1, in which case H = G, or |G : H| = 2, in which case H = A,,. (We use the fact
that |G| = |G : H||H| for a finite group G and subgroup H.)

We will show that ker 7NA,, = (e) is not possible which will complete the proof. Suppose the
equations holds. Then |ker7||A,| = |(kerm)A,| < |G| = 2|A,| which means that |ker7| < 2. By
the first isomorphism theorem

|G|/|Ker | = |G/Kern| = [Im7| < |S4| < (n—1)L

Therefore n! = |G| < 2(n — 1)!, or n < 2, a contradiction. Thus ker 7NA,, # (e).

5. (20 points) This is basically a matter of patience.

(a) Let P = G1xG9 be the “product” of groups and m; : P — G; for i = 1,2 be defined by
mi((91,92)) = g; for all (g1,¢92) € P. For (g1,92), (g}, 95) € P the calculation

mi((91,92)(91, 92)) = (9191, 9295)) = 9:9; = mi((91, 92))7:((91, 95))

shows that 7; is a homomorphism.
Suppose that P is a group and 7, : P — G, are group homomorphisms. Suppose further that
F : P' — P is a group homomorphism such that w0’ = 7} for i = 1,2. For a € P’ the calculation

mi(F(a)) = (mioF)(a) = m(a)

shows that F'(a) = (7}(a), w5(a)). Therefore there is at most one group homomorphism F' : P/ — P
such that moF = 7} for ¢ = 1, 2.

Define a function F': P’ — P by F(a) = (7} (a), 75(a)) for all @ € P’. Thus 7}(a) = m;(F(a)) =
(m;oF)(a) for all @ € P’ which means 7, = m;oF for i = 1,2. For a,a’ € P’ note that

F(ad’) = (m(ad’), my(ad")) = (71 (a)m(a'), my(a)ma(a’)) = (w1 (a), m3(a))(my (a'), my(a’)) = F(a) F(a')

and thus F' is a group homomorphism.



(b) Suppose that (P, 7, m) and (P’, 7], 75) are products of G; and Go. Then there is a group
homomorphism F': P' — P which satisfies m;0F = 7} for i = 1,2. Since (P', 7}, %) and (P, my, m2)
are products of G; and G, there is a group homomorphism F’ : P — P’ which satisfy wjoF’ = m;
for i = 1,2. Note FoF': P — P satisfies

mio(FoF") = (mjoF)oF' = mwoF' = m,.

As Idp : P — P satisfies m;oldp = m; for i = 1,2 also, by uniqueness FoF’ = Idp. Therefore
F'oF = Idp:. These last two equations establish that F' and F’ are inverses of each other.



