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Here is the basis for a solution to the first two problems.

Lemma 1 Suppose G is a group, p is a positive prime, and G has s cyclic subgroups of order p.
Then the number of elements of G of order p is s(p− 1).

Proof: Suppose that H1, . . . , Hs are the subgroups of order p. Then the non-identity elements
of these subgroups account for the elements of G of order p by Lagrange’s Theorem. Suppose
Hi∩Hj 6= (e). Choose e 6= a ∈ Hi∩Hj. Then a ∈ Hi, Hj and has order p. Thus Hi = (a) = Hj.
Consequently H1\{e}∪ · · · ∪Hs\{e} describes a partition of the elements of G of order p. 2

For a finite group G and positive prime p we let np denote the number of Sylow p-subgroups of
G. If |G| = pnm, where n ≥ 1 and (m, p) = 1, then np = 1 + kp for some non-negative integer k
and np | |G|. Thus np|m.

There is a corollary to the proof of the lemma which is stated here for the record. It is general-
ization of the lemma.

Corollary 1 Suppose G is a group, d is a positive integer, and G has nd cyclic subgroups of order
d. Then the number of elements of G of order d is ndϕ(d), were ϕ is the Euler phi-function. 2

1. (20 points) Most of the basic details are taken care of by Lemma 1. Since p, q divide |G|
it follows by the Sylow Theorems that np, nq ≥ 1. Suppose that no Sylow q-subgroup is normal.
Then nq > 1 which means nq = 1 + q = pn. The number of elements in G of order q is therefore
nq(q − 1) = pn(q − 1) = pnq − pn = |G| − pn by Lemma 1.

Let S ⊆ G be the subset of all elements which do not have order q. Then |S| = pn. Let P be
a Sylow p-subgroup of G. Then elements of P have order p` for some 0 ≤ ` ≤ n. Therefore P ⊆S
which means P = S since |S| = pn = |P |. Thus P is the only Sylow p-subgroup of G which means
that P is normal. We have shown that G is not simple.

2. (20 points) We may assume p < q < r. Assume that G is simple. Then np, nq, nr > 1. Since
np|qr, nq|pr, and nr|pq it follows that np ≥ q, nq ≥ r and nr = pq. The number of elements of
orders p, q, and r respectively account for

` = np(p− 1) + nq(q − 1) + nr(r − 1) ≥ q(p− 1) + r(q − 1) + pq(r − 1) = pqr − q − r + rq.
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Now 1/q + 1/r < 1 as 2 ≤ p < q < r. Therefore 0 < −r − q + rq. We have shown that
|G| ≥ ` > |G| − q − r + qr > |G|, a contradiction. Therefore G is not simple (indeed one of its
Sylow subgroups is normal).

3. (20 points) Since p | |G| there is a Sylow p-subgroup for G. Let e 6= a ∈ G. Since |G| is a power
of p it follows that (a) as order a power of p by Lagrange’s Theorem. By the theory of cyclic groups
(a) contains an element of order p.

4. (20 points) By assumption |G : H| ≤ n − 1. Let A be the set of left cosets of H in G = Sn

and let π : G −→ SA be the group homomorphism defined by π(g)(aH) = gaH for all g ∈ G and
aH ∈ A. Recall that Ker π ⊆ H. Since |G| = n! and |SA| = |G : H|! ≤ (n− 1)! it follows that π is
not injective. Therefore Ker π 6= (e).

Note that ker π∩An is a normal subgroup of An. Since n ≥ 5 the group An is simple. Therefore
ker π∩An = An or ker π∩An = (e).

Suppose that ker π∩An = An. Then An ⊆ Ker π ⊆ H. Since |G : H| ≤ |G : An| = 2 it follows
that |G : H| = 1, in which case H = G, or |G : H| = 2, in which case H = An. (We use the fact
that |G| = |G : H||H| for a finite group G and subgroup H.)

We will show that ker π∩An = (e) is not possible which will complete the proof. Suppose the
equations holds. Then |ker π||An| = |(ker π)An| ≤ |G| = 2|An| which means that |ker π| ≤ 2. By
the first isomorphism theorem

|G|/|Ker π| = |G/Ker π| = |Im π| ≤ |SA| ≤ (n− 1)!.

Therefore n! = |G| ≤ 2(n− 1)!, or n ≤ 2, a contradiction. Thus ker π∩An 6= (e).

5. (20 points) This is basically a matter of patience.

(a) Let P = G1×G2 be the “product” of groups and πi : P −→ Gi for i = 1, 2 be defined by
πi((g1, g2)) = gi for all (g1, g2) ∈ P . For (g1, g2), (g

′
1, g

′
2) ∈ P the calculation

πi((g1, g2)(g
′
1, g

′
2)) = πi((g1g

′
1, g2g

′
2)) = gig

′
i = πi((g1, g2))πi((g

′
1, g

′
2))

shows that πi is a homomorphism.
Suppose that P is a group and π′i : P ′ −→ Gi are group homomorphisms. Suppose further that

F : P ′ −→ P is a group homomorphism such that πi◦F = π′i for i = 1, 2. For a ∈ P ′ the calculation

πi(F (a)) = (πi◦F )(a) = π′i(a)

shows that F (a) = (π′1(a), π′2(a)). Therefore there is at most one group homomorphism F : P ′ −→ P
such that πi◦F = π′i for i = 1, 2.

Define a function F : P ′ −→ P by F (a) = (π′1(a), π′2(a)) for all a ∈ P ′. Thus π′i(a) = πi(F (a)) =
(πi◦F )(a) for all a ∈ P ′ which means π′i = πi◦F for i = 1, 2. For a, a′ ∈ P ′ note that

F (aa′) = (π′1(aa′), π′2(aa′)) = (π′1(a)π′1(a
′), π′2(a)π′2(a

′)) = (π′1(a), π′2(a))(π′1(a
′), π′2(a

′)) = F (a)F (a′)

and thus F is a group homomorphism.
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(b) Suppose that (P, π1, π2) and (P ′, π′1, π
′
2) are products of G1 and G2. Then there is a group

homomorphism F : P ′ −→ P which satisfies πi◦F = π′i for i = 1, 2. Since (P ′, π′1, π
′
2) and (P, π1, π2)

are products of G1 and G2, there is a group homomorphism F ′ : P −→ P ′ which satisfy π′i◦F ′ = πi

for i = 1, 2. Note F◦F ′ : P −→ P satisfies

πi◦(F◦F ′) = (πi◦F )◦F ′ = π′i◦F ′ = πi.

As IdP : P −→ P satisfies πi◦IdP = πi for i = 1, 2 also, by uniqueness F◦F ′ = IdP . Therefore
F ′◦F = IdP ′ . These last two equations establish that F and F ′ are inverses of each other.

3


