Here is the basis for a solution to the first two problems.

Lemma 1 Suppose G is a group, p is a positive prime, and G has s cyclic subgroups of order p. Then the number of elements of G of order p is $s(p - 1)$.

Proof: Suppose that H_1, \ldots, H_s are the subgroups of order p. Then the non-identity elements of these subgroups account for the elements of G of order p by Lagrange’s Theorem. Suppose $H_i \cap H_j \neq \{e\}$. Choose $e \neq a \in H_i \cap H_j$. Then $a \in H_i, H_j$ and has order p. Thus $H_i = (a) = H_j$. Consequently $H_1 \setminus \{e\} \cup \cdots \cup H_s \setminus \{e\}$ describes a partition of the elements of G of order p. \Box

For a finite group G and positive prime p we let n_p denote the number of Sylow p-subgroups of G. If $|G| = p^n m$, where $n \geq 1$ and $(m, p) = 1$, then $n_p = 1 + kp$ for some non-negative integer k and $n_p | |G|$. Thus $n_p | m$.

There is a corollary to the proof of the lemma which is stated here for the record. It is generalization of the lemma.

Corollary 1 Suppose G is a group, d is a positive integer, and G has n_d cyclic subgroups of order d. Then the number of elements of G of order d is $n_d \varphi(d)$, were φ is the Euler phi-function. \Box

1. (20 points) Most of the basic details are taken care of by Lemma 1. Since p, q divide $|G|$ it follows by the Sylow Theorems that $n_p, n_q \geq 1$. Suppose that no Sylow q-subgroup is normal. Then $n_q > 1$ which means $n_q = 1 + q = p^n$. The number of elements in G of order q is therefore $n_q(q - 1) = p^n(q - 1) = p^n q - p^n = |G| - p^n$ by Lemma 1.

Let $S \subseteq G$ be the subset of all elements which do not have order q. Then $|S| = p^n$. Let P be a Sylow p-subgroup of G. Then elements of P have order p^ℓ for some $0 \leq \ell \leq n$. Therefore $P \subseteq S$ which means $P = S$ since $|S| = p^n = |P|$. Thus P is the only Sylow p-subgroup of G which means that P is normal. We have shown that G is not simple.

2. (20 points) We may assume $p < q < r$. Assume that G is simple. Then $n_p, n_q, n_r > 1$. Since $n_p | qr$, $n_q | pr$, and $n_r | pq$ it follows that $n_p \geq q$, $n_q \geq r$ and $n_r = pq$. The number of elements of orders p, q, and r respectively account for

$$\ell = n_p(p - 1) + n_q(q - 1) + n_r(r - 1) \geq q(p - 1) + r(q - 1) + pq(r - 1) = pqr - q - r + rq.$$
Now $1/q + 1/r < 1$ as $2 \leq p < q < r$. Therefore $0 < -r - q + rq$. We have shown that $|G| \geq \ell > |G| - q - r + qr > |G|$, a contradiction. Therefore G is not simple (indeed one of its Sylow subgroups is normal).

3. (20 points) Since $p \mid |G|$ there is a Sylow p-subgroup for G. Let $a \neq e \in G$. Since $|G|$ is a power of p it follows that (a) as order a power of p by Lagrange's Theorem. By the theory of cyclic groups (a) contains an element of order p.

4. (20 points) By assumption $|G : H| \leq n - 1$. Let A be the set of left cosets of H in $G = S_n$ and let $\pi : G \to S_A$ be the group homomorphism defined by $\pi(g)(aH) = gaH$ for all $g \in G$ and $aH \in A$. Recall that $\ker \pi \subseteq H$. Since $|G| = n!$ and $|S_A| = |G : H|! \leq (n - 1)!$ it follows that π is not injective. Therefore $\ker \pi \neq (e)$.

Note that $\ker \pi \cap A_n$ is a normal subgroup of A_n. Since $n \geq 5$ the group A_n is simple. Therefore $\ker \pi \cap A_n = A_n$ or $\ker \pi \cap A_n = (e)$.

Suppose that $\ker \pi \cap A_n = A_n$. Then $A_n \subseteq \ker \pi \subseteq H$. Since $|G : H| \leq |G : A_n| = 2$ it follows that $|G : H| = 1$, in which case $H = G$, or $|G : H| = 2$, in which case $H = A_n$. (We use the fact that $|G| = |G : H||H|$ for a finite group G and subgroup H.)

We will show that $\ker \pi \cap A_n = (e)$ is not possible which will complete the proof. Suppose the equations holds. Then $|\ker \pi||A_n| = |(\ker \pi)A_n| \leq |G| = 2|A_n|$ which means that $|\ker \pi| \leq 2$. By the first isomorphism theorem

$$|G|/|\ker \pi| = |G/\ker \pi| = |\text{Im } \pi| \leq |S_A| \leq (n - 1)!.$$

Therefore $n! = |G| \leq 2(n - 1)!$, or $n \leq 2$, a contradiction. Thus $\ker \pi \cap A_n \neq (e)$.

5. (20 points) This is basically a matter of patience.

(a) Let $P = G_1 \times G_2$ be the “product” of groups and $\pi_i : P \to G_i$ for $i = 1, 2$ be defined by $\pi_i((g_1, g_2)) = g_i$ for all $(g_1, g_2) \in P$. For $(g_1, g_2), (g'_1, g'_2) \in P$ the calculation

$$\pi_i((g_1, g_2)(g'_1, g'_2)) = \pi_i((g_1g'_1, g_2g'_2)) = g_1g'_1 = \pi_i((g_1, g_2))\pi_i((g'_1, g'_2))$$

shows that π_i is a homomorphism.

Suppose that P is a group and $\pi'_i : P' \to G_i$ are group homomorphisms. Suppose further that $F : P' \to P$ is a group homomorphism such that $\pi_iF = \pi'_i$ for $i = 1, 2$. For $a \in P'$ the calculation

$$\pi_i(F(a)) = (\pi_iF)(a) = \pi'_i(a)$$

shows that $F(a) = (\pi'_1(a), \pi'_2(a))$. Therefore there is at most one group homomorphism $F : P' \to P$ such that $\pi_iF = \pi'_i$ for $i = 1, 2$.

Define a function $F : P' \to P$ by $F(a) = (\pi'_1(a), \pi'_2(a))$ for all $a \in P'$. Thus $\pi'_i(a) = \pi_i(F(a)) = (\pi_iF)(a)$ for all $a \in P'$ which means $\pi'_i = \pi_iF$ for $i = 1, 2$. For $a, a' \in P'$ note that

$$F(aa') = (\pi'_1(aa'), \pi'_2(aa')) = (\pi'_1(a)\pi'_1(a'), \pi'_2(a)\pi'_2(a')) = (\pi'_1(a), \pi'_2(a))(\pi'_1(a'), \pi'_2(a')) = F(a)F(a')$$

and thus F is a group homomorphism.
(b) Suppose that \((P, \pi_1, \pi_2)\) and \((P', \pi'_1, \pi'_2)\) are products of \(G_1\) and \(G_2\). Then there is a group homomorphism \(F : P' \to P\) which satisfies \(\pi_i \circ F = \pi'_i\) for \(i = 1, 2\). Since \((P', \pi'_1, \pi'_2)\) and \((P, \pi_1, \pi_2)\) are products of \(G_1\) and \(G_2\), there is a group homomorphism \(F' : P \to P'\) which satisfy \(\pi'_i \circ F' = \pi_i\) for \(i = 1, 2\). Note \(F \circ F' : P \to P\) satisfies

\[
\pi_i \circ (F \circ F') = (\pi_i \circ F) \circ F' = \pi'_i \circ F' = \pi_i.
\]

As \(\text{Id}_P : P \to P\) satisfies \(\pi_i \circ \text{Id}_P = \pi_i\) for \(i = 1, 2\) also, by uniqueness \(F \circ F' = \text{Id}_P\). Therefore \(F' \circ F = \text{Id}_{P'}\). These last two equations establish that \(F\) and \(F'\) are inverses of each other.