Math 516 Fall 2008 Radford

Written Homework # 5 Solution

12/03/08

1. (20 points) Note that if Ry, ..., R, are finite Boolean rings then the direct product
Ry X -+ xR, is a Boolean ring also. Thus part (c) characterizes finite Boolean rings.

(a) (8 pts) Let a,b € R. The calculation a + b = (a + b)? = a® + ab + ba + b* =
a + ab + ba + b shows that 0 = ab + ba. Therefore ab = —ba. With b = 1 we have
a = —a which means ’x = —g forall x € R‘. Thus ab = —ba = ba.

(b) (6 pts) Since R is commutative by part (a) the left ideals Re and R(1 —e) of R
are ideals. Let a € R. Then 1 = e+ (1 —e) means a = ae+a(l —e) € Re+ R(1 —e).
Therefore R = Re + R(1 — e).

Suppose that a € ReNR(1 —e). Then a = xe = y(1 — e) for some z,y € R. But

then a = ze = ze? = y(1 — e)e = y(e? —e) = y(e — e) = 0. We have shown that
RenR(1 —e¢) = (0).
(c) (6 pts) For a € R note that the (left) ideal Ra is a Boolean ring with identity
element a (as a(ra) = (ra)a = ra* = ra). If |R| = 2 then R ~ Z, by part (a). Suppose
that |R| > 2. Then there an e € R with e # 0, 1. Therefore Re, R(1—e¢) # (0) and are
thus proper subsets of R by part (b). By induction on |R| we have Re ~ ZgyX - - - XZy
(m factors) and R(1 — e) ~ ZgyX - -+ xZy (n factors) for some m,n > 1. Therefore

R = Re®R(1 —e) = (ZoX -+ XZg)X (Zgx -+ XZiy) = ZiyX - -+ X L.

Comment: You should show that the maps above are isomorphisms of rings.

2. (20 points) The point of this problem is that lack of identity element in a ring is
not a fundamental problem and that the rings End(A), where A is an abelian group,
are to general rings as permutation groups are to general groups.

(a) (12 pts) What is to be shown is that R with the given multiplication is a monoid
and the distributive laws hold. The laws for multiples (the additive analogs of the
exponent laws for abelian groups) are used.

(b) (8 pts) For r € R define ¢, : R — R by £,.(r") = rr’ for all v/ € R. Since
(' + ")y =r(r" + ") =rr" +rr” = L.(r") + £.(r") for all ;7" € R we have that
¢, € End(R), where R is regarded as an abelian group.
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Define 7 : R — End(R) by 7(r) = ¢,. The equations
Corr (7" = (r + )" =" + 0" = 0.(r") + L (")
for all r,7’,r" € R show that ¢, = {, + (.. for all r,7’ € R and the equations
Lo (P") = ()" = v (r'r") = £,.(L (r")) = (6p0l) (r")

for all r,»",r" € R show that ¢.. = (.ol for all r,v" € R. Therefore 7 is a ring
homomorphism.

Suppose that R has unity 1 and r € Kern. Then 7(r) = 0; in particular 0 =
7(r)(1) = r1 = r. Therefore Kerm = (0) which means that 7 is injective. Thus take
A=Rand 7: R — End(A) to be the composite of injective ring homomorphisms
R - R - End(A).

3. (20 points) Since Z, is a field Zy[x] is a unique factorization domain. Suppose
f(z) € Zs[zx]. If f(x) has degree 2 or 3 then f(z) is reducible if and only if has a root
(equivalently has a linear factor).

Suppose that f(z) has degree 4. Then f(z) is reducible if and only if it has a
root (equivalently has a linear factor) or is the product of two irreducible quadratic
factors.

Case 1: degf(x) = 2. Then f(x) = 2* +ax +b. Since f(0) =band f(1) =1+a+Db,
f(z) is reducible if and only if b = 0 or 1 +a + b = 0. Thus f(x) is irreducible if
and only if b #0 and 1 +a+ b # 0; that is b= 1 and 1 + a + b = 1 or equivalently

Comment: Here is another way. f(x) is reducible if and only if f(z) = (z — a)(z —
B3), where «, 3 € Zs. There are three such polynomials out of the four degree 2
polynomials. Thus there is one irreducible polynomial of degree 2. Since x? + x + 1
has no roots in Z,, this is the irreducible one.

Case 2: degf(z) = 3. Then f(z) = z* + az® + bx + ¢. Since f(0) = ¢ and f(1) =
l+a+0b+c f(z)is reducible if and only if ¢ = 0 or 1 + a + b+ ¢ = 0. Therefore
f(z) is irreducible if and only if c =1 and 1+ a+ b+ ¢ = 1 or equivalently ¢ = 1 and

a+b+1=0. Thus |23+ 22>+ 1,23+ 2+ 1.

Case 3: degf(x) = 4. Then f(z) = z* + ax® + bx* + cx + d. Since f(0) = d and
f(1) = 14+ a+0b+ c+d it follows that f(z) is reducible if and only if d = 0,
orl+a+b+c+d=0or f(z) = (2> + 2+ 1)* = 2* + 22+ 1. Thus f(z) is
irreducible if and only if d = 1 and a +b+c+ 1 = 0 and f(z) # 2* + 2% + 1.
e+ Lot Lt 41

4. (20 points) Recall that l_IMZ is a group by WH2 Exercise 1.
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(a) (8 pts.) We have noted that J[M; is a group. It is abelian since each M; is

abelian and by definition of the adciietlion in H M,;.
i€l
Suppose 7" € R and f, f' € H M;. The calculation

(r-(f+ N0 = r((f+ )

= (f() + '(v)
r(f(0) +r-(f' (1))
= (r )@+ (rf))

= (rf+rf))

for all « € I shows that r(f + f') = r-f +r-f’. Likewise the calculation
((r+r)-N@) = (r+r)(f()
= r(f() +r"(f(2))
= (@) +0"f
= (rf+7r)@)

for all + € I shows that (r+1')-f = r-f + /- f. Finally, the calculation
((rr')-F)@) = (rr')-(f(2)) = r-(r'-f(2)) = r-((r"- f) (2)) = (- (" 1)) (2)
for all « € I shows that (rr’)-f = r-(r'"-f).

(b) (12 pts.) Suppose that M is a left R-module and 7} : M — M; is a homomor-

phism of left R-modules for all ¢ € I. Further assume that F : M — ]__[]\4Z is a

el
homomorphism of left R-modules which satisfies m;0F = 7 for all ¢ € I. Then for
m € M the calculation

F(m)(i) = m(F(m)) = (moF)(m) = /(m)

shows that F'(m)(i) = m.(m) for all i € I. This last equation determines F'.
Conversely, suppose that F : M — H M; is a function which satisfies the last

equation. Then m;0F =7 for all 7 € [ asie[
(rioF)(m) = mi(F(m)) = F(m)(i) = m;(m)
for all t € I and m € M. Let m,m’ € M. Observe that
F(m+m')(i) = m;(m+m') = m;(m)+m;(m’) = F(m)(@)+F(m') (i) = (F(m)+F(m'))(7)
for all « € I which means that F(m + m’) = F(m) + F(m/). Since

F(r-m)(i) = mi(r-m) = r-(mi(m)) = r-(F(m)()) = ((r-F)(m))(i)
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forallr € R, m € M, and i € I we have F(r-m) =r-F(m) forallr € R and m € M.

5. (20 points) We sketch a proof. We continue with the ideas of WH4 Exercise 1.
For f € [[ M set Sy = {i € I| f(i) # 0}. Then

i€l

Srig € SpUS,, S_y=Sp, and S,.;C Sy (1)

for all f,g € H M; and r € R. The last inclusion follows by ¢ & S,.; implies ¢ € S;.
Lot i€l
M ={fe]]M|S; is finite}
i€l

Observe that So = @, where 0 € [[ M; defined by 0(i) = 0 for all i € 1. Thus 0 € M.
Thus M is a submodule of ] ]\Izellay virtue of (1).

Let i € I. Note that y; iéezlm module map. Since S, () has at most one element for
all m € M, it follows that Im j, € M. Therefore we may regard j, as a module map
2 M, — M.

Suppose f € M. Then

f= 3 a0 2)
i€Sy
as both sides agree on all ¢ € I. If Sy = (), that is f = 0, by convention the sum on
the right hand side is O.

Now suppose that N is a left R-module and {;}ics is a family of left R-module
maps, where 5. : M; — N for all ¢ € I. Suppose that F' : M — N is a left
R-module map which satisfies Floy; = j; for all ¢ € I. Using (2) we see

F(f)=F(X_ 5:(f@)) = > Fu(f(0))) = >_ Fou(f(i)) = >_ 5i(f (i)

iESf ieSf iESf ’iESf

and therefore
F(f)= > Ji(f(i))- (3)
iESf
In particular there is at most one map of left R-modules F’' : M — N such that
Floy, =g for alli € I.

Let F': M — N be the function defined by (3). Note that if T is a finite subset
of I and Sy C T then F(f) =Y ;er 7;(f(i)) since ¢ € T\S; means that f(i) = 0. It is
a straightforward check that F' is a map of left R-modules which satisfies Foy; = 7.
for all < € I. See the solution to WH4 Exercise 1.



