This homework set is a workout in Sections 6.1 and 6.2 of the ClassNotes.

1. (25 points) (1) (5) By the Eisenstein Criterion \(x^{10} - 34 \in \mathbb{Q}[x] \) is irreducible with \(p = 2 \) (or 17). Therefore \(x^{10} - 34 \) this is the minimal polynomial of \(\sqrt[10]{34} \) over \(\mathbb{Q} \) by 6.2.1(5). The degree of \(\sqrt[10]{34} \) is 3 by 6.2.1(2).

(10) Ditto, by the Eisenstein Criterion \(x^3 - 21 \in \mathbb{Q}[x] \) is irreducible with \(p = 3 \) (or 7). Thus \(x^3 - 21 \) this is the minimal polynomial of \(\sqrt[3]{21} \) over \(\mathbb{Q} \) by 6.2.1(5). The degree of \(\sqrt[3]{21} \) is 3 by 6.2.1(2). By 6.1.6 both \(\mathbb{Q}[\sqrt[10]{34}] \) and \(\mathbb{Q}[\sqrt[3]{21}] \) are finite field extensions of \(\mathbb{Q} \).

Let \(K = \mathbb{Q}[\sqrt[10]{34}, \sqrt[3]{21}] = \mathbb{Q}[\sqrt[3]{21}][\sqrt[10]{34}] \). Since \(\sqrt[3]{21} \) is a root of \(x^3 - 21 \in \mathbb{Q}[\sqrt[10]{34}] \) it follows that \([K : \mathbb{Q}[\sqrt[3]{21}]][\sqrt[3]{21}] : \mathbb{Q} \leq 3 \) by 6.1.6. Therefore

\[
[K : \mathbb{Q}] = [K : \mathbb{Q}[\sqrt[10]{34}]][\mathbb{Q}[\sqrt[10]{34}] : \mathbb{Q}] \leq 3 \cdot 10 = 30
\]

by 6.1.1. Now 10 = \([\mathbb{Q}[\sqrt[10]{34}] : \mathbb{Q}] \) and 3 = \([\mathbb{Q}[\sqrt[3]{21}] : \mathbb{Q}] \) divide \([K : \mathbb{Q}] \) by 6.2.1(2). Therefore 30 \(\leq [K : \mathbb{Q}] \). As \([K : \mathbb{Q}] \leq 30 \) we conclude \([K : \mathbb{Q}[\sqrt[10]{34}]] = 30 \).

(2) (5) Since

\[
30 = [K : \mathbb{Q}] = [K : \mathbb{Q}[\sqrt[3]{21}]][\mathbb{Q}[\sqrt[3]{21}] : \mathbb{Q}] = [K : \mathbb{Q}[\sqrt[3]{21}]] \cdot 3
\]

it follows that \([K : \mathbb{Q}[\sqrt[3]{21}]] = 10 \). Since \(x^{10} - 34 \in \mathbb{Q}[\sqrt[3]{21}] \) is monic of degree 10 and has root \(\sqrt[10]{34} \) it follows that \(m_{\mathbb{Q}[\sqrt[3]{21}], \sqrt[10]{34}}(x) = x^{10} - 34 \) by 6.2.1(5).

(3) (5) Since

\[
30 = [K : \mathbb{Q}] = [K : \mathbb{Q}[\sqrt[10]{34}]][\mathbb{Q}[\sqrt[10]{34}] : \mathbb{Q}] = [K : \mathbb{Q}[\sqrt[10]{34}]] \cdot 10
\]

\(^1\)Slightly revised 04/26/07.
it follows that \([K : \mathbb{Q}(\sqrt[10]{34})] = 3\). Since \(x^3 - 21 \in \mathbb{Q}(\sqrt[10]{34})\) is monic of degree 3 and has root \(\sqrt[10]{21}\), it follows that \(m_{\mathbb{Q}(\sqrt[10]{34})}, \sqrt[10]{34}(x) = x^3 - 21\) by 6.2.1(5).

2. (25 points) (1) (10) By the Eisenstein Criterion, \(x^3 - n \in \mathbb{Q}[x]\) is irreducible. As \(a \in \mathbb{R}\) is a root of this polynomial, it follows by 6.1.6 that \(a\) is algebraic over \(\mathbb{Q}\) and by 6.2.1 that \(m_{\mathbb{Q}, a}(x) = x^3 - n\) and \([\mathbb{Q}[a] : \mathbb{Q}] = 3\).

Now \(\{1, a, a^2\}\) is a basis for \(K = \mathbb{Q}[a]\) over \(\mathbb{Q}\) by 6.1.7.

(2) (15) Since \(\{1, a, a^2\}\) is a basis for \(K\) over \(\mathbb{Q}\) and all \(r \in \mathbb{Q}\) can be written \(r = r_1 + 0a + 0a^2\), it follows that \(b = r + sa \not\in \mathbb{Q}\) since \(s \neq 0\).

Now \(\deg m_{\mathbb{Q}, a}(x)\) divides \([K : \mathbb{Q}] = 3\) by 6.2.1(3). Since \(b \not\in \mathbb{Q}\) necessarily \(\deg m_{\mathbb{Q}, a}(x) = 3\). By 6.2.1(5) any monic polynomial \(f(x) \in \mathbb{Q}[x]\) of degree 3 which has \(b\) as a root is \(m_{\mathbb{Q}, b}(x)\).

There are a couple of ways to find such an \(f(x)\). One is to note that \(b^3\) is a \(\mathbb{Q}\)-linear of \(\{1, b, b^2\}\) by 6.1.7 and then find such a relation. From

\[
b = r_1 + sa, \quad b^2 = r_2^1 + 2rsa + s^2a^2,
\]

and

\[
b^3 = r_3^3 + 3r_2^2sa + 3r_2s^2a^2 + s^3a^3 = (r_3 + s^3n)1 + (3r_2^2s)a + (3r_2s^2)a^2
\]

we deduce

\[
b^3 = (r_3 + s^3n)1 - 3r_2^2b + 3rb^2.
\]

Another way is to note that \(a = \frac{1}{s}(b - r)\) and therefore

\[
n = a^3 = \frac{1}{s^3}(b^3 - 3b^2r + 3br^2 - r^3))
\]

which leads to

\[
b^3 - 3b^2r + 3br^2 - r^3 - s^3n = 0.
\]

Therefore

\[
m_{\mathbb{Q}, b}(x) = x^3 - 3r^2x^2 + 3r^2x - r^3 - ns^3.
\]

3. (25 points) (1) (7) Note that \(\sqrt{2}\) is a root of \(x^2 - 2 \in \mathbb{Q}[x]\). For the reasons cited in the solution to Problem 2 we can conclude that \(\mathbb{Q}(\sqrt{2})\) is an algebraic extension of \(\mathbb{Q}\) of degree 2 and \(\mathbb{Q}(\sqrt{2})\) has \(\mathbb{Q}\)-basis \(\{1, \sqrt{2}\}\).
Suppose that \(a = \sqrt{1+\sqrt{2}} \in Q[\sqrt{2}] \). Then \(a = r1 + s\sqrt{2} \) for some \(r, s \in Q \). Squaring \(a \) yields
\[
1 + \sqrt{2} = a^2 = r^2 + 2rs\sqrt{2} + 2s^2 = (r^2 + 2s^2)1 + 2rs\sqrt{2}
\]
which holds if and only if
\[
r^2 + 2s^2 = 1 \quad \text{and} \quad 2rs = 1.
\]
Thus \(r \neq 0 \) (and incidently \(1 - 2rs = 0 \); can’t divide by this!!!!!!). Substituting \(s = \frac{1}{2r} \) into the first equation yields
\[
2r^4 - 2r^2 + 1 = 0.
\]
But then \(r^2 \) is a root of \(2x^2 - 2x + 1 \) which has no real roots by the quadratic formula, contradiction. (One student noted that \(2r^2 \) is a rational root of \(x^2 - 2x + 2 \) which is impossible by Eisenstein again.) Therefore \(a \notin Q[\sqrt{2}] \).

(2) \((12)\) Since \(a \) is a root of \(x^2 - (1 + \sqrt{2}) \in Q[\sqrt{2}][x] \) it follows that \([Q[\sqrt{2}][a] : Q[\sqrt{2}]] \leq 2\) by 6.1.6. Let \(E = Q[\sqrt{2}][a] \). Since \(a \notin Q[\sqrt{2}] \) necessarily \([E : Q[\sqrt{2}]] = 2\). Thus \([E : Q] = 4\) by 6.1.1. By 6.2.1(5) we deduce that \(m_{Q[\sqrt{2}][a]}(x) = x^2 - (1 + \sqrt{2}) \) and, as \((a^2 - 1)^2 = 2\), or equivalently \(a^4 - 2a^2 - 1 = 0 \), \(m_{Q[a]}(x) = x^4 - 2x^2 - 1 \).

(3) \((6)\) We note that
\[
m_{Q,a}(x) = x^4 - 2x^2 - 1
= (x^2 - 1)^2 - 2
= ((x^2 - 1) - \sqrt{2})((x^2 - 1) + \sqrt{2})
= (x^2 - (1 + \sqrt{2}))(x^2 + (\sqrt{2} - 1))
= (x - \sqrt{1 + \sqrt{2}})(x + \sqrt{1 + \sqrt{2}})(x - 1\sqrt{\sqrt{2} - 1})(x + 1\sqrt{\sqrt{2} - 1})
\]
Since \(E \subseteq \mathbb{R} \) and \(i\sqrt{\sqrt{2} - 1} \notin \mathbb{R} \) and is a root of \(x^2 + (\sqrt{2} - 1) \in E[x] \), \([K : E] = 2\) and therefore \([K : Q] = [K : E][E : Q] = 8\) by 6.1.1.

There is a simpler description of \(K \). Observe that
\[
(i\sqrt{\sqrt{2} - 1})(\sqrt{1 + \sqrt{2}}) = i\sqrt{(\sqrt{2} - 1)(\sqrt{2} + 1)} = i\sqrt{2 - 1} = i.
\]
Therefore \(\iota \in K \) which means

\[
K = E[\iota] = \mathbb{Q}[\sqrt{2}, \sqrt{1 + \sqrt{2}}, \iota].
\]

4. **(25 points)** (1) (10) Let \(a \in K \). The statement “\(a \notin K_{\text{alg}} \) implies \(a \) is transcendental over \(K_{\text{alg}} \)”, that is “\(a \notin K_{\text{alg}} \) implies \(a \) is not algebraic over \(K_{\text{alg}} \)”, is logically equivalent to its contrapositive “\(a \) algebraic over \(K_{\text{alg}} \) implies \(a \in K_{\text{alg}} \)”. We show the latter.

Suppose that \(a \) is algebraic over \(K_{\text{alg}} \). Then \(K_{\text{alg}}[a] \) is an algebraic extension of \(K_{\text{alg}} \) by 6.1.6 and 6.2.2(1). By definition \(K_{\text{alg}} \) is an algebraic extension of \(F \). Therefore \(K_{\text{alg}}[a] \) is an algebraic extension of \(F \) by 6.2.2(3).

By definition of algebraic extension \(a \in K_{\text{alg}} \).

(2) (5) By definition \(\{1, a, a^2, \ldots \} \) is linearly independent over \(F \). Generally for vectors spaces over \(F \), non-empty subsets of linearly independent subsets are linearly independent. Therefore \(\{1, 1^n, a^{2n}, \ldots \} \) is linearly independent which means that \(a^n \) is transcendental over \(F \) by definition.

(10) Since \(a \) is a root of \(x^n - a^n \in F(a^n) \) it follows that \(a \) is algebraic over \(F(a^n) \) and \([F(a^n)[a] : F(a^n)] \leq n \) by 6.1.6. Since \(a \) is algebraic over \(F(a^n) \) we have \(F(a) = F(a^n)(a) = F(a^n)[a] \) by 6.1.5(2). Therefore \([F(a) : F(a^n)] \leq n \).

To complete the proof we need only show that \(\{1, a, \ldots , a^{n-1}\} \) is linearly independent over \(F(a^n) \).

Since \(a^n \) is transcendental over \(F \) the ring \(F[a^n] \) is a polynomial ring in indeterminant \(a^n \) over \(F \). The elements of \(F(a^n) \) are quotients of polynomials in \(F[a^n] \). Suppose that

\[
\frac{f_0(a^n)}{g_0(a^n)} + \frac{f_1(a^n)}{g_1(a^n)}a + \cdots + \frac{f_{n-1}(a^n)}{g_{n-1}(a^n)}a^{n-1} = 0,
\]

where \(f_i(a^n), g_i(a^n) \in F[a^n] \) and \(g_i(a^n) \neq 0 \) for all \(0 \leq i \leq n - 1 \). “Clearing denominators” by multiplying both sides of the equation above by the product \(g_0(a^n) \cdots g_{n-1}(a^n) \) results in

\[
\sum_{i=0}^{n-1} g_0(a^n) \cdots g_{i-1}(a^n) \widehat{g_i(a^n)} g_{i+1}(a^n) \cdots g_{n-1}(a^n) f_i(a^n)a^i = 0,
\]

where \(\widehat{ } \) means factor omitted. Now

\[
g_0(a^n) \cdots g_{i-1}(a^n) \widehat{g_i(a^n)} g_{i+1}(a^n) \cdots g_{n-1}(a^n) f_i(a^n)a^i
\]

4
is an F-linear combination of powers of the type $a^{\ell n+i}$, where $\ell \geq 0$. Since $n\mathbb{Z}, 1+n\mathbb{Z}, \ldots, (n-1)+n\mathbb{Z}$, the left cosets of $n\mathbb{Z}$ in \mathbb{Z}, are disjoint and a is transcendental over F,

$$g_0(a^n) \cdots g_{i-1}(a^n)g_i(a^n)g_{i+1}(a^n) \cdots g_{n-1}(a^n)f_i(a^n)a^i = 0$$

for all $0 \leq i \leq n-1$. Since $F[a]$ is an integral domain $f_i(a^n) = 0$ for all $0 \leq i \leq n-1$. Therefore

$$\frac{f_0(a^n)}{g_0(a^n)} = \frac{f_1(a^n)}{g_1(a^n)} = \cdots = \frac{f_{n-1}(a^n)}{g_{n-1}(a^n)} = 0$$

which shows that $\{1, a, \ldots, a^{n-1}\}$ is linearly independent.