If F and K are fields then $F \subseteq K$ means that F is a subfield of K. Also \mathbb{Q}, \mathbb{R} and \mathbb{C} denote the fields of rational, real, and complex numbers respectively.

1. Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a homomorphism of rings with unity. Show that $f = \text{Id}_\mathbb{R}$ (thus $\text{Aut}(\mathbb{R})$ is trivial). [Hint: Show that f is order preserving. You can assume the following facts from Analysis: $a \leq b$ if and only if $b - a$ is a square and there is a rational number between two different real numbers.]

2. Let $F \subseteq K$, where F is finite, $|F| = p^m$, and $[K : F] = n$. Show that the product of all monic irreducible polynomials $p(x) \in F[x]$ whose degree divides n is $x^{\text{ord}_K} - x$.

3. Let $K = \mathbb{Q}[a, b, \omega] \subseteq \mathbb{C}$, where $a, b \in \mathbb{R}$ satisfy $a^3 = 5$, $b^5 = 6$, and $\omega \in \mathbb{C}$ is a primitive 3^{rd} root of unity.
 (1) Find $[K : \mathbb{Q}]$.
 (2) Determine the group $\text{Aut}(K)$.
 (3) Is K a Galois extension of \mathbb{Q}? Of $\mathbb{Q}[b]$?
 (4) What is the smallest closed subfield of K?

4. Find the Galois group of $f(x) = x^4 - 30$ over
 (1) \mathbb{Q}, and
 (2) over $\mathbb{Q}[i]$ by determining generators and relations.