Math 517 Spring 2007 Radford

Written Homework # 1 Solution

02,/28/07

Throughout R, S are rings with unity and modules are unital.

1. (20 points) Let I be a non-empty set and let { P, };c; be an indexed family
of left R-modules. A product of the family is a pair ({m; }ics, P), where

(P.1) P is a left R-module and m; : P — P, is a homomorphism of left
R-modules for all ¢ € I, and

(P.2) If ({7} }icr, P') is a pair which satisfies (P.1) then there is a unique R-
module homomorphism ® : P/ — P which satisfies m;0® = 7. for all
1€ 1.

Prove the following theorem:

Theorem 1 Let R be a ring with unity, let I be a non-empty set, and let
{P,}icr be an indezed family of left R-modules.

(1) There is a product of the family {P;}icr.

(2) Suppose that ({m;}tier, P) and ({7, }icr, P') are products of the family
{P;}icr- Then there is a unique isomorphism of left R-modules ® :
P — P which satisfies m;o® = m} for all v € I.

[Hint: Let P be the set of all functions f : I — U,;c; P; which satisfy
f(i) € P, for all i € I. Show that P is a left R-module under the operations

(f +9)(0) = f(i) + 9(i)

and

(r-f) (@) = r-(f(7))
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for all f,g € P and i € I. Consider m; : P — P; defined by m;(f) = f(i) for
all f € Pand i€ ]
Solution: Part (1) of the theorem (10). Let f,g,h € P and 7,7’ € R. Then
(f+9)@) = f(i) +g(i) € P and (r-f)(i) = r-f(i) € P, for all i € I since
the P;’s are modules. Thus P is closed under addition and multiplication by
elements of R.

Let 0 € P be defined by 0(i) =0 € P, foralli € I and (—f)(:) = —f(i) €
P, for all : € I. Then

(f+9)+h=f+(@g+h), f+rg=9+ [ 0+f=f f+(=f)=0,

and

r(f+g)=rf+rg, (r+r)f=rf+r"f ' f=r0"f), 1.f=f

are established by showing that both sides of each equation evaluated on
1 € I agree. Thus P is a left R-module.
Let I € I. Define m; : P — P; by m;(f) = f(i) for all f € P. Since

mi(f +g) = (f+9)@) = f(i) +9(i) = m(f) + milg)

and
mi(r-f) = (r-f)(i) = r-f (i) = r-m(f)
show that 7; is a homomorphism of left R-modules. Therefore ({m;}icr, P)
satisfies (P.1).
Suppose that ({7} };cr, P') also satisfies (P.1) and ® : P/ — P is a
homomorphism of left R-modules which satisfies m;o® = 7} for all i € I. Let
p' € P'. Then

O(p) (1) = mi(@(p) = (me®)(p) = mi (1) (1)

for all i € I shows the uniqueness part of (P.2). As for existence, let ® be
defined by (1) and let p/, p” € P’. The calculations

S +p")i) = 7



and

O(r-p)(i) = mi(r-p) = rm(p) = r-(@)(0) = (re(p)()
for all i € I shows that ®(p' +p”) = ®(p') + ®(p”) and D(r-p’) = r-D(p).
Therefore @ is a homomorphism of left R-modules; by (1) note that 7,09 = 7,
for all i € I. We have completed the proof of part (1) of the theorem.

To show part (2) of the theorem (10), suppose that ({m;}icr, P) and
({7 }icr, P') are products of the family {P,},c;. Then there is a unique iso-
morphism of left R-modules ® : P’ — P such that m;0® = 7} for all ¢ € I.
Likewise there is a unique isomorphism of left R-modules &' : P — P’ such
that m,o®" = m; for all i € I. For ¢ € I the composite ®od’ : P — P
satisfies

m;0(®od’) = moldp (2)

as
mi0(Pod’) = (mod)od’ = 7’0’ = ;.

With ({m;}icr, P) as the pair of (P.2) it follows by (2) that ®od’ = Idp.
Reversing the roles of ({m; }icr, P) and ({7} }icr, P') we conclude that ®'od =
Idps also. Therefore ® and @’ are isomorphisms.

2. (30 points) Let I be a non-empty set. A free R-module on I is a pair
(1, F), where

(F.1) Fis a left R-module and 2 : I — F' is a set map, and

(F.2) if (¢, F') is a pair which satisfies (F.1) then there is a unique R-module
homomorphism ® : F' — F’ which satisfies o = 7'.

Prove the following theorem:
Theorem 2 Let R be a ring with unity and let I be a non-empty set.
(1) There is a free left R-module (2, F') on I.

(2) Suppose that (1, F) and (v, F") are free left R-modules on I. Then there
is a unique isomorphism of left R-modules ® : F' — F' which satisfies
$oy =17/,

Suppose that (1, F) is a free left R-module.

(3) Imz generates F' as a left R-module.
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(4) 1 is ingective and {2(€)}eer is a basis for F.

[Hint: For part (1), let F' be the subset of the product P of the family
{R;}icr, where R; = R for all ¢ € I, of Exercise 1 consisting of all functions
with finite (which includes empty) support. For f € P the support of f is
defined by

supp f = {i € I'| f(i) # 0}.
]

Solution: Part (1) of the theorem (8) . Let P be the module of Exercise 1
constructed with the family {P;};c;, where P, = R for all i € I, and let F
be the subset of all functions f € P with finite support. For f,g € P and
r € R observe that

supp (f —rg) € supp f U supp g; (3)
for if 0 # (f —r-g)(i) = f(i) — r-g(i) then either f(i) # 0 or g(i) # 0. Since

0 € F it follows by (3) that F is a submodule of P.
For i € I let 4(i) : I — R be the function defined by

Wi ={ 130

Then ¢(i) € F and 2 : [ — F defines an injective function.
We will show that {(7) };c; is a basis for F. Suppose that iy,... i, € T
are distinct and rq,...,r, € R. Set

f = i Tg'Z(ig).
(=1

Since f(j) = iy (rea(i)) () = Sy re(alie) () for all j € I we have

= {0 i

Ty j:’Lg

Thus {is)}ier is independent (take f = 0) and spans as f € F\0 can be

written
f= 2 f@)). (4)

i€supp f
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Therefore {i)}ier is a basis for /. We have done most of the work at this
point.

Suppose that (¢, F') satisfies (F.2) and ® : FF — F” is a homomorphism
of left R-modules such that ®oz =+'. Then ®(2(i)) = ¢/(¢) for all i € I. Thus
for iy,...,1, € I distinct and rq,...,r, € R we have

(I)(Tl'l(il) ++ rn'Z(in))
= T1~q)<l(i1)) + -+ an)(l(zn))
= (i) + -+ (). (5)

We have shown the uniqueness part of (F.2); that is there is at most one
® which satisfies (F.2). As for existence, the reader is left with the small
exercise of showing that (5) describes a well-defined module homomorphism
which satisfies the condition of (F.2).

Part (2) of the theorem (8). Let (z, F') and (¢, F") be free left R-modules on
I. There is a unique homomorphism of R-modules ® : ' — F’ such that
®or = ¢/ and there unique homomorphism of R-modules ®' : F” — F' such
that ®oi’ = 1. Using (1, F') for (F.2) we see the identity map Idp : [’ — F
is the only R-module homomorphism f such that foir =1.

Observe that

(D'od)or = P'o(Por) = P'or’ =1 = Idpor.

Thus ®’o® = Idp from which ®o®’ = Idp by reversing the roles of (z, F')
and (¢, F"). Thus @ is an isomorphism.

Comment: To do parts (3) and (4) we can use (2) to note that that all
free modules on I are isomorphic in a specific way and then transfer the
(algebraic) properties of the particular model we constructed for part (1). We
follow a different approach — namely we use the “universal mapping property”
of free modules instead.

Part (3) of the theorem (7). We first show that (2, F.) is a free left R-module
on I, where F, = (Imz). Since Im+ C F,, by abuse of notation, we regard ¢
as a function 2 : I — F,.

Suppose that (¢, F') is a pair which satisfies (F.1). Then there homo-
morphism of R-modules ® : F© — F’ such that ®or = /. The restriction
®, = O, |g : F, — F' is a homomorphism of left R-modules and ®,01 = 4'.
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Suppose that &' : F,, — F”’ is also a homomorphism of left R-modules
and ®’or = ¢/. Then ®,(u(¢)) = (¢) = ®'(2(¢)) for all £ € I. Therefore ®,, P’
agree on generators of F,. which means they are the same. Thus (z, F}) is a
free left R-module on I.

Now by the mapping property of free modules on I there is a unique
homomorphism ® : F, — F which satisfies ®o2 = 2, and this is an iso-
morphism by part (2). But the inclusion inc : F,, — F satisfies incor = 1.
Therefore inc = ® and is thus an isomorphism. This means F, = F as
required.

Part (4) of the theorem (7). Let ¢,¢' € I be distinct and let «/' : I — R by
any function such that ¢(¢) = 0 and +(¢') = 1. As ®or =/ we have
() = /(€)= 0 £ 1 = /() = D().

Therefore 2(¢) # 1(¢'). We have shown that ¢ is one-one.
In light of (3), to show that {¢(¢)}scs is a basis we F' we need only show
independence. Suppose that ¢1,...,¢, € I are distinct and

ria(ly) + -+ rpe(l,) =0,

where r1,...,7, € R. Fix 1 <i < n and let ¢/ : I — be any function such
that +/(¢;) =1 and ¢/(j) = 0 for all j € I, j # ¢;. Then the calculation
0=(ri2(lr) + -+ rpe(ly))
= r-®0(ly)) + -+ 1 P((l))
= r' () + -+ 12 ()
= T'il
shows that ry =---=r, = 0.

3. (25 points) Suppose that f : R — S is a function and for r € R and
s € S define r-s = f(r)s.

(a) (18) Show that f is a homomorphism of rings with unity and Im f is
in the center of S if and only if S is a left R-module and

r(ss') = (r-s)s’ = s(r-s) (6)

forall 7 € R and s, € S.



(b) (7) Suppose that S has a left R-module structure (S, ) which satisfies
(6). Define F': R — S by F(r) = rel for all » € R. Show that F' is a
homomorphism of rings with unity and Im F' is in the center of S.

The ring S is called an R-algebra if gS and (6) is satisfied. The exercise
shows there are two ways of describing an R-algebra.

Solution: Suppose that f is a homomorphism of rings with unity and Im f
is in the center of S. Let 7,7/ € R and s,s" € S. We have

(r+1)s = f(r+1)s = (F(r) + F("))s = f(r)s + f(r')s = rs+ 1",

r(s+s)=f(r)(s+5)=f(r)s+ f(r)s =rs+rs,
(rr')-s = f(rr')s = f(r) f(r")s = f(r)(f(1")s) = r-(1"5),
ls=f(l)s=1ls=s

<

since f is a homomorphism of rings with unity. Since Im f is in the center of
S we have

f(r)ss' = (f(r)s)s' = (sf(r))s" = s(f(r)s)
which translates to
r-ss’ = (r-s)s’ = s(r-s).

Observe that f(r) =r-1 for all r € R.

Now the converse follows by part (b). So we do both at once. That f
(and thus F') is a homomorphism of rings with unity whose image lies in the
center of S follows from

(r+r)l=rl1+7"-1
rr’-1=r(r'1) =r-(1(+"-1)) = (r-1)(+'-1),
11 =1,

and
(r-1)s =r-(1s) = r(s1) = s(r-1).

4. (25 points) Let Z be the ring of integers and Q be the field of rational
numbers.



(a) (8) Let:2Z — Z be the inclusion. Show that :®1d : 2Z®z(Z/2Z) —
Z®z(Z/2Z) is not injective.

Solution: Let Zy = Z /27 and f : Z — 2Z be the isomorphism of abelian
groups (left Z-modules) defined by f(n) = 2n for all n € Z. The composition

of isomorphisms

d
Ty — Z@q 2 o 97,0,

where the first is the “left version” of the isomorphism of ClassNotes, Propo-
sition 2.1.2, yields 1 — 1®1 +— 2®1. Therefore 0 # 2®1 € 2Z®zZs. As an
element of Z®zZs we have 21 = 1201 = 1®2-1 = 1®0 = 0. Therefore
1®Idgz is not injective.

(b) (8) Show that Q®zA = (0) for all finite abelian groups A.

Solution: Let n = |A|. Then n-a = 0 for all a € A. (The multiplicative
version of this is a™ = e for all a € A.) For ¢ € Q and a € A we calculate

q®a = (¢/n)n®a = (¢/n)®n-a = (¢/n)®0 = 0.
Since the elements of QA are sums of elements of the type g®a it follows
that Q@zA = (0)

(¢) (9) Suppose that f: Mg — M}, and g : gN — gN' are surjective
maps of R-modules. Show that the homomorphism of abelian groups
f®g: MRrN — M'®@rN’ is a surjective.

Solution: Let y € M'®rN'. Then y = >>;_, m.®n,, where m, € M and
n, € N' for all 1 <i <s. Since f and g are surjective there are m; € M
and n; € N such that f(m;) = m} and g(n;) = n} for all 1 < i < s. Set
x =7 ;m;®n; Since f®g is a group homomorphism

(fog)) = ()Y men)

= Y (f®g)(m@n;)

i=1
= > f(m)®g(n:)
=1
= ) mi@n;
=1
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Therefore f®g is surjective.



