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2 Preliminaries

2.1 The language LPA

First, we fix our language for the theory PA:

LPA = (0, S,+, ·, <).

2.2 Logical symbols and negation normal form

We will build formulas using the ordinary first-order logical symbols along with equality. However, we
will only consider formulas represented in negation normal form—that is, formulas in which all negations
will be pushed inward “as far as they can be”. We will use ‘∼’ as a metasymbol to denote the negation
normal form of a formula which follows it.

In particular, our most basic formulas will be the literals: atomic formulas and their ordinary negations.
The metasymbol ‘∼’ will interact with complex formulas as follows:

∼ φ ≡ ¬φ, when φ is a literal;

∼ (¬φ) ≡ φ;

∼ (φ ∧ ψ) ≡ ∼ φ ∨ ∼ ψ (and similarly for disjunction);

∼ ∀xφ ≡ ∃x ∼ φ (and similarly for existential quantification).

So, for example, the formula

¬ (¬∃x(S(x) = 0) ∧ ∀x¬(x+ y = 0)) ∨ ¬(z = S(S(0)))

is not yet in negation normal form, but its modification to

∃x(S(x) = 0) ∨ ∃x(x+ y = 0) ∨ ¬(z = S(S(0)))

is.
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2.3 Deductions in PA

Our main object of study in this talk will be well-founded proof trees—what I’ll call deductions—in
which each node is isolated by a rule. The deductions will be proved in Tait’s calculus, the rules of which
are given below. We will be proving sequents through our deductions—that is, sets of formulas to be
interpreted disjunctively. As a bit of notation, ‘⊢ Γ’ means we have a deduction of some formula in Γ.

We add in axioms for PA, in the form of the DEF rule, dictating that the symbols in the language act as
they are intended and that equality is really equality. We also add IND, an axiom scheme for induction:

Using these deductions rules and axioms, we may prove, for example, that PA ⊢ φ,∼ φ for any formula
φ:
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3 CUT-elimination for PA and its consistency

We have now the technical machinery set up which will do the work of the consistency proof. We need
only focus on one rule—namely, the CUT rule—to see how to leverage a consistency proof for PA. The
key theorem is the following.

Theorem 1. If PA ⊢ Γ, where Γ is a sequent whose formulas contain no universal quantifiers, then there
is a deduction of Γ which does not use the CUT rule.

Let us say that the theory PA is consistent if, from the axioms, one cannot derive ‘0 = 1’. Then we have
the following main result, in the form of a corollary.

Corollary 1.1. PA is consistent. In other words, PA ̸⊢ 0 = 1.

Proof. Notice that ‘0 = 1’ is a sentence not containing logical operators nor quantifiers. Thus, a deduction
of ‘0 = 1’ could not have concluded in anything other than an application of the CUT rule. However,
‘0 = 1’ does not contain universal quantifiers, so by the previous theorem, there should be a deduction of
the sentence without use of the CUT rule. Since this is impossible, there can be no deduction of ‘0 = 1’
in our system.

The consistency of our formalization of PA, then, hinges upon so-called “CUT-elimination” for deductions
yielding sequents without universal quantifiers. The strategy to prove Theorem 1 involves four steps.

1. Define an auxiliary system PA∞ which is more easily shown to eliminate the CUT rule from de-
ductions.

2. Show that PA ⊢ Γ =⇒ PA∞ ⊢ Γ.

3. Show that PA∞ has CUT-elimination.

4. Show that if PA∞ ⊢ Γ without CUT, where Γ doesn’t contain universal quantifiers, then PA ⊢ Γ
without CUT.

4 The system PA∞ and step four of the CUT-elimination strategy

4.1 The system PA∞

The system PA∞ keeps much of the same deduction rules as PA, but introduces an infinitely branching
rule. In particular, it maintains the deduction rules AX, ∧I, ∨I, ∃I, and CUT as well as the following.

It should be highlighted here that the defining axioms dictating the behavior of the symbols in LPA are
absent and are instead replaced either by TRUE by itself or by TRUE along with the ω rule. For example:
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4.2 Step four of the CUT-elimination strategy

We proceed with the demonstration of step four of the CUT-elimination proof of PA since steps two and
three are a bit more involved.

Proposition 1. Let Γ be a sequent whose formulas do not contain universal quantifiers. If PA∞ ⊢ Γ
without CUT, then PA ⊢ Γ without CUT.

Proof. If we have a CUT-free deduction of a universal-free sequent Γ in PA∞, then the deduction could
not have applied the ω rule anywhere. If it had, then there would be universal quantifiers left over in Γ
(since they were not CUT out). Thus, we may replace the deduction in PA∞ with one in PA by replacing
every instance of the TRUE rule with the corresponding actual deduction in PA.

We end this section by remarking that it was crucial in this proof that Γ not contain any universally-
quantified formulas, for this made the proof of Γ in PA∞ nearly a proof in PA to begin with.

5 Steps two and three of the CUT-elimination strategy

5.1 Step two of the CUT-elimination strategy

We begin with a definition of the rank of a formula, which is somehow meant to measure complexity of
a formula. For any formula φ, we define rk(φ) by induction on φ as follows.

• If φ is a literal, then rk(φ) = 0.

• If φ is of the form ψ1 ∧ ψ2 or of the form ψ1 ∨ ψ2, then rk(φ) = max{rk(ψ1), rk(ψ2)}+ 1.

• If φ is of the form ∀xψ or of the form ∃xψ, then rk(φ) = rk(ψ) + 1.

Further, we introduce the notation T ⊢r Γ if there is a deduction in T with conclusion Γ such that all
applications of the CUT rule in the deduction apply to formulas of rank less than r. In this notation, to
write T ⊢0 Γ is to say that a theory T has a CUT-free deduction of Γ. Now we are ready for the main
proposition of step two of the CUT-elimination proof for PA.

Proposition 2. If PA ⊢ Γ, where Γ is a sequent all of whose free variables are among x1, ..., xn, then
there is some r ∈ N such that for any m1, ...,mn ∈ N we have that PA∞ ⊢r Γ(m1, ...,mn).

Put differently, this proposition tells us that if PA proves some sequent, then so does PA∞—and, in fact,
the applications of the CUT rule in PA∞ can be uniformly bounded no matter which natural numbers
are chosen to instantiate the free variables of Γ.

Proof of Proposition 2. We proceed by induction on the deduction of Γ in PA. First, if the deduction
concludes with any of the rules AX, ∧I, ∨I, ∃I, or CUT, then we repeat the step and induction takes care
of this case. For example:

4



Next, for deductions whose final rule is DEF, we proceed as follows:

Then, for deductions ending in an application of ∀I, we proceed as follows:

And finally, for deductions concluding in an application of IND, we proceed as follows:

Note that in none of the modifications did we introduce an application of the CUT rule. Therefore, in
the new deduction in PA∞, all applications of the CUT rule are applications straight from the original
deduction. Thus, since the deduction in PA is finite (since it is a finite proof tree dealing with finite
formulas), the CUT-rank was bounded in PA, hence it is bounded in PA∞.

5.2 Step three of the CUT-elimination strategy

The final proposition required in the consistency proof for PA is the CUT-elimination property for PA∞.

Proposition 3. If PA∞⊢r+1 Γ, then PA∞⊢r Γ.
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To prove this proposition requires the use of several lemmas which we will state and mostly leave un-
proven. The use of these lemmas will be to systematically replace instances of the CUT rule in any given
deduction in PA∞ to an instance of CUT over lower rank formulas. To do this, we need to know how
to reduce the CUT rank in deductions on formulas of various complexities. We consider the simplest
example case first, then state (all) and prove (some of) the lemmas, and finish by showing how these
lemmas provide Proposition 3.

Suppose we are trying to reduce the CUT rank over a conjunction—that is, suppose we have a deduction
such that the last step is an application of the CUT rule on a rank r formula of the form φ ∧ ψ:

In the right side sub-deduction, some step must introduce the formula ∼ φ ∨ ∼ ψ. The relevant case in
which this occurs is the one in which an application of ∨I is responsible:

To reduce the rank of the CUT used in the last step of the deduction of Γ, we may replace the CUT over
φ ∧ ψ with one over, say, φ by itself. To do this, we require two items: first, a way to systematically
eliminate the introduction of the disjunction ∼ φ ∨ ∼ ψ; second, a way to deduce Γ, φ from Γ, φ ∧ ψ.

The lemmas provide exactly these items.

Lemma 1 (∧ Inversion). If PA∞ ⊢r Γ, φ1 ∧ φ2, then PA∞ ⊢r Γ, φi for i = 1, 2.

Proof. We induct on the deduction of Γ, φ1 ∧ φ2.

Lemma 2 (∀ Inversion). If PA∞ ⊢r Γ, ∀xφ(x), then for any n ∈ N PA∞ ⊢r Γ, φ(n).

Lemma 3 (⊥ Inversion). If PA∞ ⊢r Γ, η, where η is a false literal, then PA∞ ⊢r Γ.

Lemma 4 (∨ Elimination). If PA∞ ⊢r Γ,∼ φ1 ∨ ∼ φ2, PA∞ ⊢r ∆, φ1, and PA∞ ⊢r Σ, φ2 with
rk(φ1 ∧ φ2) ≤ r, then PA∞ ⊢r Γ,∆,Σ.

Proof. Note that the only interesting case occurs when rk(φ1 ∧ φ2) = r. Induct on the deduction of
Γ,∼ φ1 ∨ ∼ φ2.

Lemma 5 (∃ Elimination). If PA∞ ⊢r Γ, ∃x ∼ φ and for each n ∈ N PA∞ ⊢r Σ, φ(n), then PA∞

⊢r Γ,Σ.
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We are then in position to sketch the proof of Proposition 3.

Proof (sketch) of Proposition 3. We induct on the rank r + 1 deduction of Γ. If the last rule is anything
other than a CUT of rank r, we’re done by the inductive hypothesis. Else, if the deduction ends with

we split into cases depending on the complexity of φ. If φ is a conjunction, we proceed as outlined above,
applying CUT to one of the conjuncts with ∧ Inversion and ∨ Elimination. We conclude similarly if the
rank r CUT applies at the end over a quantified formula or over a false literal.

Corollary 3.1. PA∞ ⊢r Γ =⇒ PA∞ ⊢0 Γ. In other words, PA∞ admits CUT-elimination on
deductions of bounded CUT rank.

Of course, this completes the CUT-elimination strategy for PA over deductions of existential sequents.

6 Gödel’s second incompleteness theorem

The main result of this talk—the consistency of PA—should strike logicians as suspect. We know, from
Gödel’s second incompleteness theorem, that no theory, PA included, ought to be able to prove its own
consistency. So exactly what is going on in this proof such that the consistency is shown?

The answer must be: we have not worked out a proof which can be formalized in PA itself. Indeed this
is the case. The key observation is that we have used the system PA∞ as an intermediary within the
proof, but this system has a rule which cannot be formalized within PA—namely, the ω rule. By means
of infinitary reasoning, then, we have concluded the consistency of PA, but we have importantly not done
so within PA. Thus, no contradiction lurks in the background of our work here.
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