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2 Background on O-Minimality

We begin with some definitions regarding o-minimality. We fix a model (M, <, ...) of DLO without
endpoints.

Definition 1. We say that M is “o-minimal” if every definable set in M is a finite union of points and
intervals (including ±∞).

An important fact about o-minimal structures is that definable sets are very well controlled, even in
Cartesian powers. In particular, if M is o-minimal, then any definable set in Mn is a finite, disjoint union
of special sets. Specifically, we have the so-called “cell decomposition theorem”:

Theorem 1 (Cell Decomposition). For any parameter set A ⊆ M: if X ⊆ Mn is A-definable, then X is
a finite, disjoint union of A-definable cells.

(Provide some geometric intuition on cells, noting how they are built up in dimension. Give
terminology for “thin” vs. “thick” cells, projections onto a k-dimensional subspace to show
X is homeomorphic to π(X) for some k ≤ n.)

We note that there is a well-defined notion of dimension for cells—namely, the number of thick cells used
in constructing it. We can characterize this differently, based on a notion of generic points.

Definition 2. Let ā ∈ Mn, A ⊆ M. We define dim(ā/A) to be the least cardinality of a subtuple ā′ of ā
such that ā ∈ dcl(A∪ ā′). We can define the dimension of types over A using the dimension of realizations
(assuming we work in a monster model or something).

We note some quick facts about this notion of dimension:

• if A ⊂ B, then dim(ā/B) ≤ dim(ā/A)

• dim(ā/A) is the cardinality of any maximally algebraically independent over A subtuple of ā. (Here,
using acl = dcl in o-minimal setting.)

Definition 3. Let X ⊆ Mn be A-definable for some A ⊆ M. We define the dimension of X as

dim(X) = max(dim(ā/A) : ā ∈ X).

Further, we say that ā ∈ X is a generic point of X over A if dim(X) = dim(ā/A).
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(Remark that definable bijections preserve this dimension of definable sets. Also, dimension
of a disjoint union is maximum dimension of the components.)

There is one other general fact about definability in o-minimal structures—regarding definable functions—
which we will make use of.

Theorem 2 (Piecewise Continuity). Let f : X → M be a definable function on the definable set X ⊆ Mn

(suppressing parameters). There is a finite, definable decomposition of X into subsets X1, ..., Xm such
that f ↾Xi is continuous for each i.

In other words, definable functions on definable sets in the o-minimal setting are (piecewise) very well
behaved. Moreover, we can take cell decompositions of domains of definable functions which are compat-
ible with the piecewise behavior of the definable function—that is, we may as well assume the definable
sets in the previous theorem are cells.

Our final background result will help our ultimate theorem—that any field definable in an o-minimal
structure is either real or algebraically closed.

Definition 4. We say that a ring R is “formally real” if −1 is not a sum of squares in R.

Definition 5. A “real closed field” is a formally real field with no formally real, algebraic extensions.

The idea here is that all a real closed field misses in falling short of being algebraically closed are imaginary
elements, even roots of “negative” elements. The field of real numbers is the paradigm example of a real
closed field—in some sense, all one misses is

√
−1 =: i.

Theorem 3 (Artin-Schreier). Let F be a formally real field. The following are equivalent:

1. F is real closed.

2. F has a (nontrivial) finite, algebraically closed extension.

(Remark that this is different from Ronnie’s seminar. There, we characterized F as real
closed iff F is not algebraically closed but F (i) is. This is equivalent to the above: if F has a
finite, algebraically closed extension, the extension must be degree two since F is formally
real—all odd degree polynomials have a root in F .)

3 O-Minimally Definable Groups and Fields

3.1 Groups

Our first main result characterizes o-minimally definable groups as manifold-like structures.

Theorem 4 (Pillay 1988). Let G be an ∅-definable group in an o-minimal structure M with dim(G) = n.
Then there are a large ∅-definable subset V ⊂ G and a topology T on G such that:

1. G with T is a topological group;

2. V is a finite, disjoint union of ∅-definable sets U1, ..., Ur s.t. each Ui is T -open in G and there is a
definable homeomorphism between Ui and some open subset U ′

i of Mn.

(Remark about “large” in definition: a large subset Y of a definable set X is one such that
dim(X \ Y ) < dim(X); equivalently, Y contains every generic [over the parameters of X and
Y ] point of X. Note also that being large is a definable condition.)

To see why this makes such groups “look like” manifolds, note the following fact.
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Fact 1. Let X be a large definable subset of G. Finitely-many translates of X cover G.

(Remark that this is reasonable, given dimension considerations.)

In other words, each point in G is included in some (translate of) of the Ui’s, open sets which are
homeomorphic to open sets of Mn. In the case where M = R, this is just what it is for the group to be a
manifold.

Proof (sketch) of Theorem 4.

• Take cell decomposition of G by which U1, ..., Ur are the n-dimensional cells, and set V0 := U1 ∪
· · · ∪Ur. Note, then, that V0 is by definition large in G. Moreover, each of these cells (and therefore
V0 itself) is definably homeomorphic to an open set in Mn, and we identify them.

• By Piecewise Continuity, we can refine the Ui further such that inversion is continuous on the pieces
of the refinement of Ui. Then the pieces of Ui either map continuously into Uj or not at all.

• Note that every generic point of G is in one of the Ui’s. Denote by U j
i the smallest subset of Ui

containing all generic points of G which map to Uj under inversion–and we know the generics map

to some Uj since if ā is generic, so is ā−1. Setting, V1 :=
⋃

i,j U
j
i , we see that V1 is large in V0 (hence

in G) and that inversion is continuous V1 → V0.

• Note that we can do a similar sort of move to find a large (in V0), definable subset Y1 ⊂ V0 × V0 on
which multiplication is continuous Y1 → V0.

• Next, we overlay the continuity conditions on V1 and Y1 generically so that we obtain a large subset
of G×G for which multiplication is continuous and projections onto either coordinate yield elements
of V1. (Draw picture.)

• In the overlaying process, we impose further conditions on the subset leftover to ensure that, for
any element (ā, b̄) in the “good” set, the product āb̄ ends up back in V1. (Three dimensionality
of the picture.)

• This process yields a definable partition of G into subsets W1, ...,Wk for which V :=
⋃
Wi is large

in G and s.t. inversion is a continuous map V → V and multiplication is continuous V ×V → V . It
remains to define the new topology T such that inversion and multiplication turn into T -continuous
operations on all of G; this requires that “good” translates of open sets remain open.

• Define the topology T as follows:

Z ⊂ G is T -open iff for every g ∈ G, g · Z ∩ V is open.

This topology treats translates of V as charts in the sense of manifolds. Due to the following
fact, we can think of the transition maps between these translates as continuous—so inversion and
multiplication will extend continuously to all of G:

For Z ⊂ V and g ∈ G, g · Z is T -open iff Z is open in V.

3.2 Fields

The previous argument may be adapted to reconcile both field operations with the large subset V of
the field F . The topology T defined in this case is with respect to additive translates, but essentially
everything works the same.
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4 Real and Algebraic Closedness

Finally, we wish to prove the following:

Theorem 5. If F is an infinite field definable in the o-minimal structure M, then F is either real closed
or algebraically closed.

To do so, we invoke the following lemmas.

Lemma 1. Let the infinite field F be definable in M, and let K be a proper, finite field extension of F .
Then K is definable in M and dim(K) > dim(F ).

Proof. The idea here is to define K using F k, where [K : F ] = k—i.e., where k is the F -vector space
dimension of K. Clearly, then, dim(K) = k ·dim(F ) > dim(F ) since k > 1 as the extension is proper.

Lemma 2. (In the relevant setting) If dim(F ) > 1, then F is algebraically closed.

(Remark that the second lemma above depends upon the topological and definable struc-
ture of the field F .)

Now for the proof of the final theorem.

Proof of Theorem 5. If F is not algebraically closed, then it has a proper, finite, algebraic extension—say
K. By the first lemma above, K is definable in M and has larger dimension than F , so it is algebraically
closed. But then F has a proper, finite extension to an algebraically closed field, so it is real closed by the
Artin-Schreier Theorem (Note that F is definable as an ordered field, so it is formally real).
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