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1 Overview

• Logical paradoxes and our näıve proof methods

• Gödel’s incompleteness theorem and an argument for inconsistency

• Cantor’s theorem (with a consistent proof)

• Relevant, inconsistent, näıve set theory with preliminary definitions and lemmas

• Cantor’s theorem, revisited (with an inconsistent proof)

• Further results in Weber’s relevant set theory

2 Logical paradoxes and our näıve proof methods

Consider the so-called ”Liar Sentence”: ’This sentence is false.’ If we assume the sentence is true, then it
expresses its own falsehood, but if we assume it is false, then the sentence expresses something true—hence
is true. In mathematics, since at least the turn of the twentieth century, logical paradoxes have cropped up
as well, particularly in set theory—the Russell set, the Burali-Forti paradox, etc. Whereas set-theoretic
paradoxes are fairly recent in comparison with their semantic counterparts, thinkers have been aware of
and have battled with paradoxes such as the Liar Sentence since at least ancient Greece, yet very little
can be said of such paradoxes as regards their solutions: do we count the paradoxes as false or perhaps
meaningless? do we construct formal systems to avoid them as von Neumann did with the set/class
distinction? do we bar ourselves from speaking of them altogether? Let us come at the question of what
to make of these semantic and set theoretic paradoxes from an altogether different direction than head-on.

What does it mean in mathematics to prove a theorem? In lecture halls and in most academic papers,
to prove a theorem is to provide a process by which we establish the truth of some mathematical claim.
Usually, this process proceeds by reasoning from previous results we have proven, but it cannot go on
backward indefinitely in this way; instead, we hold certain propositions to be true ”self-evidently” and
begin our preliminary reasoning from these axioms, eventually obtaining more complicated results. Now,
why have we cared to ask what is involved in proving mathematical statements to be true? For just
this reason: this näıve method of proof—the process of reasoning by which we establish mathematical
truths—runs us into a paradoxical corner.

It does not take a stretch of the imagination to think our näıve proof methods could be completely
formalized, the axioms codified and the rules of inference encoded; indeed, some might say this is precisely
the goal of a logician—to formally uncover the workings of our reasoning, to decide precisely which
arguments are good (whatever that may mean) and for what reason(s). One might hope that, within this
imagined formalization of our long-used näıve proof method, all recursively-definable functions would be
representable; in fact, some might insist they must be (for how couldn’t they be? after all, they seem to
be näıvely recursively definable). But at this point our formalization of the näıve proof method has run
into a serious issue: Gödel’s first incompleteness theorem. The formalization of our usual proof methods
will be unable to prove or refute certain sentences. We may be able to push this uncomfortable truth to
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the side if it weren’t for the paradox at the heart of the issue—namely, such a sentence guaranteed by
Gödel’s first incompleteness theorem is provably true in the näıve sense.

3 Gödel’s incompleteness theorem and an argument for inconsistency

Let us examine this alleged paradox more closely. (Following Priest (1979)) Suppose that we have encoded
our näıve proof method in a formal system P , and let g be the Gödel code of the Gödel sentence

¬∃xProv(x, g)

where here ’Prov(x, y)’ is the recursively definable relation which holds exactly when x is the Gödel
number of a proof in P of the sentence with Gödel code y. This sentence should be recognizable as
the sentence which Gödel’s theorem isolates as undecidable in the formal system; however, consider the
following ”näıve proof” of its truth:

Proof. If there is some Gödel code of the proof of the Gödel sentence, then the sentence expressing this
is true:

∃xProv(x, g) → ⌜∃xProv(x, g)⌝ is true.

Note that this conditional holds for any sentence in the formal system. Since this conditional holds, we
may replace the consequent with ’g is provable’, as this is what the Prov relation tells us. Hence:

∃xProv(x, g) → g is provable.

Assuming soundness of the formal system, then, we have that g is true, so that

∃xProv(x, g) → ¬∃xProv(x, g).

We may then conclude that ¬∃xProv(x, g).

What are the crucial ingredients in concocting this paradox that the Gödel sentence is formally undecidable
whilst being (näıvely) provably true? For one thing, the assumption of soundness of our formal theory;
however, we should not be so quick to give this up, for if we did not believe that our näıve methods
of proof yielded truths, then there would be no point to our doing mathematics. For another, we have
assumed, in applying Gödel’s theorem, that the system formalizing the näıve proof method is consistent.
One option we have, then, if one of our goals in logic is to formalize the methods by which we prove things
in mathematics classrooms, for example, is to drop this consistency requirement for our formal system.
In other words, to solve the paradox, we may be required to recognize our näıve methods as inconsistent
and to accept certain paradoxes as both true and false (as our proof of the Gödel sentence could easily
be modified to show its truth as well).

4 Cantor’s theorem (with a consistent proof)

What is at stake if we were to make this move? Of course, the assumption that the underlying logic of
our mental reasonings is classical would have to be replaced with another paraconsistent logic—but we
would need to be careful not to end in triviality; we don’t want a theory which proves everything, for that
would be effectively useless. What principles would we have to forego, then, in replacing this assumption?
First and most substantially, the law of non-contradiction—the belief that no contradiction (that is, no
sentence and its negation) can be true. What are the downstream effects of such a move? For one thing,
we would be required to more carefully consider our methods of proof and the inference rules we are
allowed. One worry, then, is how many of our classical results in mathematics would have to be revised
since the old methods of proof may be invalid in the new paraconsistent system. For the rest of the talk,
we focus on such set theoretic results in an attempt to show the feasibility of the whole enterprise.
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Consider the following classical result.

Theorem 1 (Cantor’s Theorem). Suppose that A is any set and P(A) its powerset. Then |A| < |P(A)|.
(That is, for any function f : A → P(A), f is not a surjection.)

Proof. Fix any function f : A → P(A), and define the subset B ⊆ A as follows:

B := {x ∈ A | x ̸∈ f(x)}.

Now, suppose for the purpose of contradiction that f is surjective; then there is some y ∈ A such
that f(y) = B. However, if y ∈ B, then y ̸∈ f(y) = B, so y is not a member of B. But then, since
y ̸∈ B = f(y), we must have that y ∈ B, so y cannot be a member of B; we have reached a contradiction.
Thus, f must not be a surjection.

It is likely clear where in this proof our new worry might be. If we are to adopt a paraconsistent logic
as the formal background to our mathematical reasoning, then we are not allowed reductio ad absurdum
arguments without a second thought like Cantor’s proof employs (but we are still allowed some of them,
as the rules in Weber’s appendix (2012) show). Our goal for the moment, then, becomes to see if we may
after all salvage Cantor’s theorem, which is at the heart of modern set theory.

5 Relevant, inconsistent, näıve set theory with preliminary definitions
and lemmas

We begin by redefining what a set is in our new set theory, and since we are working with the näıve
methods (wherein we care not so much about inconsistency as we do nontriviality), we define sets very
simply and intuitively according to the two axioms:

Axiom 1 (Abstraction). x ∈ {z | φ(z)} ↔ φ(x)

Axiom 2 (Extensionality). ∀z(z ∈ x ↔ z ∈ y) ↔ x = y

From these two axioms and the formal system set up in the appendix to Weber (2012), it can be shown
(e.g. as in Weber 2010, 2012) that unrestricted comprehension follows from the Abstraction axiom, and
since this comprehension schema is unrestricted, the rest of ZF follows easily.

Next, we set some definitions.

Definition 1. The ”Russell set” is the set R := {x | x ̸∈ x}.

From this definition, we may see (via the system of inconsistent reasoning) that (R ∈ R)∧ (R ̸∈ R) holds;
this is the paradox of Russell’s set, and it is both true and false in our new system. Using the Russell set,
we define the ”Routley reduct” of any set.

Definition 2. Fix any set X. The ”Routley reduct of X” is the set R(X) := {x ∈ X | R ∈ R}.

The key property of the Routley reduct of any set X is that for any x ∈ X, we have both x ∈ R(X) and
x ̸∈ R(X). This follows easily from the Abstraction axiom and the fact that R ∈ R and R ̸∈ R both
hold in the system. It is obvious that the Routley reduct of any set has some inconsistent properties, as
we have just noted, but the crucial property we’ll need for our modified proof of Cantor’s theorem is the
following.

Lemma 1. Fix any set X. Then R(X) ̸= R(X). (Also, R(X) = R(X).)
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Proof. Let x ∈ X. Then we have x ∈ R(X), as was just noted. On the other hand, we have x ̸∈ R(X).
For ease of notation, let us denote by R1(X) the version of R(X) which contains x and let us denote by
R2(X) the set R(X) when viewing it as not containing x. Then the following fails:

∀z(z ∈ R1(X) ↔ z ∈ R2(X))

so that by Extensionality R1(X) ̸= R2(X). Dropping our notation, we have R(X) ̸= R(X).

We will also make use of the following similar result.

Lemma 2 (Lemma 2.1 in Weber, 2012). Let X be any set such that X ̸= X. Then Y ̸= X for any set
Y .

Proof. We proceed by cases. First, if Y = X, then by substitution Y ̸= X, so Y ̸= X. Conversely, if
Y ̸= X, then Y ̸= X.

Finally, some definitions regarding functions and cardinality. (Functions are defined analogous to how
they are defined in classical mathematics.)

Definition 3. A function f : X → Y is ”injective” iff f(x) = f(y) ⊢ x = y.

Note that, since contraposition of the deduction relation ’⊢’ does not hold in general in our system, this
is not the same as saying x ̸= y ⊢ f(x) ̸= f(y).

Definition 4. A function f : X → Y is ”surjective” iff ∀y(y ∈ Y → ∃x(x ∈ X ∧ f(x) = y)).

Ordinals are defined analogously to how they are classically defined (but the set axioms give unusual
results such as On itself being an ordinal). Cardinals are defined in more details than we have time to get
into, but the essential notion plays the same role: the cardinality of a set X is the least ordinal κ with
which the set is in bijective correspondence. (The extra details are due to the fact that we are using a
relevance logic, so we need to be careful with our conditionals and deductions; see Weber 2012.)

6 Cantor’s theorem, revisited (with an inconsistent proof)

We are now in a position to provide a new proof of Cantor’s theorem within the relevant formal system
using the previous results and definitions.

Theorem 2 (Cantor, 1892). Suppose that X is any nonempty set and P(X) its powerset. Then |X| <
|P(X)|.

Proof (Weber, 2012). First, we see that there is an injection f : X → P(X): define the function f such
that f(x) = {z ∈ X | z = x}. This is a well-defined function and it is injective since {x} = {y} proves
that x = y by Extensionality. Since X injects into P(X), |X| ≤ |P(X)|.
Next, we wish to establish that no surjection exists from X onto its powerset. To this end, let f : X →
P(X) be any function and consider the Routley reduct of X

R(X) = {x ∈ X | R ̸∈ R}.

Clearly, R(X) ∈ P(X). By Lemma 1, R(X) ̸= R(X), so for any z ∈ X, f(z) ̸= R(X) by Lemma 2 (as
f(z) is some set). Thus, there is some subset of X which f does not meet; hence, f is not surjective.

In our new, inconsistent system we have salvaged Cantor’s theorem, so there is hope for the salvation of
further set theoretic results. Indeed, Weber (2010 and 2012) goes on to show very many classical results
in set theory in the same formal system.

4



7 Further results in Weber’s relevant set theory

Theorem 3 (Cantor-Schröder-Bernstein). For any two sets X and Y ,

|X| ≤ |Y |, |Y | ≤ |X| ⊢ |X| = |Y |.

Theorem 4. |V | < |P(V )|.

Corollary 4.1. |V | = |P(V )| and |P(V )| < |V |.

Corollary 4.2. |V | ≠ |P(V )|, and so |P(V )| ≠ |P(V )|.

Theorem 5 (Wellorder of V ). There is a contra-injection Ω : V → On.

Corollary 5.1 (Zermelo, 1904). Every set can be well-ordered.

Theorem 6 (Choice). There is a choice function on every nonempty set X.

Corollary 6.1 (Global Choice). There is a choice function on V .

Theorem 7. |V | = |On|.

Theorem 8 (König’s Lemma). Let cardinals κi < λi for all i in some index set I. Then∑
i∈I

κi <
∏
i∈I

λi.

Theorem 9. ℵOn = On.

Theorem 10. GCH both holds and fails at On.

Theorem 11. The continuum hypothesis is false.

Theorem 12 (Large cardinals). There exists regular, inaccessible, Mahlo, and measurable cardinals.
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