Stat 411 – Review problems for Exam 2

Solutions

- 1. (a) Geometric distribution: $L(\theta) = \theta^n (1 \theta)^{\sum_{i=1}^n X_i n}$, so $T = \sum_{i=1}^n X_i$ is a (minimal) sufficient statistic for θ .
 - (b) Truncated scale exponential distribution: $L(\theta) = e^{-(1/\theta)\sum_{i=1}^{n} X_i}/\{\theta(1-e^{-7/\theta})\}^n$, so $T = \sum_{i=1}^{n} X_i$ is a (minimal) sufficient statistic for θ .
 - (c) Gamma distribution: $L(\theta) = (\prod_{i=1}^n X_i)^{\theta_1 1} e^{-(1/\theta_2) \sum_{i=1}^n X_i} / \{\theta_2^{\theta_1} \Gamma(\theta_1)\}^n$, so $T = (\prod_{i=1}^n X_i, \sum_{i=1}^n X_i)$ is a (jointly minimal) sufficient statistic for (θ_1, θ_2) .
 - (d) Location-scale exponential distribution: $L(\theta) = (1/\theta_2)^n e^{-\sum_{i=1}^n X_i + n\theta} I_{[\theta_1,\infty)}(X_{(1)},$ so $T = (X_{(1)}, \sum_{i=1}^n X_i)$ is a (jointly minimal) sufficient statistic for (θ_1, θ_2) .
- 2. A naive unbiased estimator of θ^2 is X_1X_2 . Also, $T = \sum_{i=1}^n X_i$ is a complete sufficient statistic. Use the Rao-Blackwell strategy to get the MVUE.

$$E_{\theta}(X_{1}X_{2} \mid T = t) = P_{\theta}(X_{1} = 1, X_{2} = 1 \mid T = t)$$

$$= \frac{P_{\theta}(X_{1} = 1, X_{2} = 1, X_{3} + \dots + X_{n} = t - 2)}{P_{\theta}(T = t)}$$

$$= \frac{\theta \cdot \theta \cdot \binom{n-2}{t-2}\theta^{t-2}(1-\theta)^{n-t}}{\binom{n}{t}\theta^{t}(1-\theta)^{n-t}}$$

$$= \binom{n-2}{t-2} \div \binom{n}{t}$$

$$= \frac{t(t-1)}{n(n-1)}.$$

This is unbiased for θ^2 and a function of T; therefore, it's the unique MVUE.

3. The sample total $T = \sum_{i=1}^{n} X_i$ and, hence $\overline{X} = T/n$, is a complete sufficient statistic for θ in the Poisson problem. A reasonable guess for the MVUE of θ^2 is \overline{X}^2 . Its expected value is $\mathsf{E}_{\theta}(\overline{X}^2) = \mathsf{V}_{\theta}(\overline{X}) + \mathsf{E}_{\theta}(\overline{X})^2 = \theta/n + \theta^2$. So \overline{X}^2 isn't the MVUE. But what about $\overline{X}^2 - \overline{X}/n$? The expected value is

$$\mathsf{E}_{\theta}(\overline{X}^2 - \overline{X}/n) = \mathsf{E}_{\theta}(\overline{X}^2) - \mathsf{E}_{\theta}(\overline{X}/n) = \theta/n + \theta^2 - \theta/n = \theta^2.$$

Since $\overline{X}^2 - \overline{X}/n$ is an unbiased estimator of θ^2 based on the complete sufficient statistic, the Lehmann–Scheffe theorem ensures that it's the MVUE.

- 4. Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathsf{N}(\theta, 1)$. From the Homework, we know that $\overline{X}^2 1/n$ is the MVUE of $\theta^2 > 0$. But there's nothing to say that $|\overline{X}| < n^{-1/2}$ can't happen; therefore, it is possible that the MVUE of θ^2 is negative.
- 5. (a) Negative binomial (with fixed r) is an exponential family:

$$f_{\theta}(x) = {r+x-1 \choose r-1} \theta^r (1-\theta)^x$$
$$= \exp \left\{ \log(1-\theta)x + \log {r+x-1 \choose r-1} + r \log \theta \right\}.$$

Since K(x) = x in this case, the complete sufficient statistic for θ based on an iid sample X_1, \ldots, X_n is $T = \sum_{i=1}^n X_i$.

(b) The two-parameter gamma distribution is an exponential family:

$$f_{\theta}(x) = \frac{\theta_2^{\theta_1}}{\Gamma(\theta_1)} x^{\theta_1 - 1} e^{-x/\theta_2}$$

= \exp\{(\theta_1 - 1) \log x + (-1/\theta_2)x - \theta_1 \log \theta_2 - \log \Gamma(\theta_1)\}.

This is a two-parameter exponential family with $p_1(\theta) = \theta_1 - 1$, $p_2(\theta) = -1/\theta_2$, $K_1(x) = \log x$ and $K_2(x) = x$. Therefore, the (jointly) complete and sufficient statistic for (θ_1, θ_2) is $T = (\sum_{i=1}^n \log X_i, \sum_{i=1}^n X_i)$.

6. It can be shown, using moment-generating functions, for example, that $T = \sum_{i=1}^{n} X_i$ has a Pois $(n\theta)$ distribution. Therefore, T has PMF

$$e^{-n\theta}(n\theta)^t/t! = \exp\{\theta t + t\log n - \log t! - n\theta\}.$$

This is of the exponential family form with $p(\theta) = \theta$, K(t) = t, $S(t) = t \log n - \log t$! and $q(\theta) = -n\theta$.

7. Following the hint, if $X_i \sim \mathsf{Unif}(\theta, \theta + 1)$, then we may write $X_i = \theta + Z_i$, where $Z_i \sim \mathsf{Unif}(0,1)$. Similarly, $X_{(1)} = \theta + Z_{(1)}$ and $X_{(n)} = \theta + Z_{(n)}$. We know that $Z_{(1)} \sim \mathsf{Beta}(1,n)$ and $Z_{(n)} \sim \mathsf{Beta}(n,1)$. Factorization theorem shows that $T = (X_{(1)}, X_{(n)})$ is a sufficient statistic for θ . However, since

$$\mathsf{E}_{\theta}(X_{(1)}) = \theta + \frac{1}{n+1}$$
 and $\mathsf{E}_{\theta}(X_{(n)}) = \theta + \frac{n}{n+1}$,

if we set $h(T) = X_{(n)} - X_{(1)} - (n-1)/(n+1)$, then for any θ

$$\mathsf{E}_{\theta}[h(T)] = \mathsf{E}_{\theta}(X_{(n)}) - \mathsf{E}_{\theta}(X_{(1)}) - \frac{n-1}{n+1} = \theta + \frac{n}{n+1} - \theta - \frac{1}{n+1} - \frac{n-1}{n+1} = 0.$$

We've found a non-constant function h(t) such that $\mathsf{E}_{\theta}[h(T)] = 0$ for all θ ; therefore, T is not complete.

8. In Homework 06, we showed that $X_{(1)}$ is a complete sufficient statistic for θ . This is also a location parameter problem, so $X_{(n)} - X_{(1)}$ is an ancillary statistic. By Basu's theorem, $X_{(1)}$ and $X_{(n)} - X_{(1)}$ are independent. Therefore,

$$0 = \mathsf{C}_{\theta}(X_{(1)}, X_{(n)} - X_{(1)}) = \mathsf{C}_{\theta}(X_{(1)}, X_{(n)}) - \mathsf{V}_{\theta}(X_{(1)}),$$

which implies $C_{\theta}(X_{(1)}, X_{(n)}) = V_{\theta}(X_{(1)})$. Because it's a location parameter problem, we can further write $X_{(1)} = \theta + Z_{(1)}$, where $Z_{(1)}$ is the minimum of n iid Exp(1) random variables. It can be shown (via CDF calculations) that $Z_{(1)} \sim Exp(1/n)$ and, furthermore,

$$C_{\theta}(X_{(1)}, X_{(n)}) = V_{\theta}(X_{(1)}) = V_{\theta}(\theta + Z_{(1)}) = 1/n^2.$$

9. Write $X_i = \theta Z_i$ where $Z_i \sim \mathsf{N}(0,1)$. This is an exponential family distribution so $T = X_1^2 + \dots + X_n^2$ is a complete sufficient statistic; moreover, since it's a scale parameter problem, $U = X_1^2/(X_1^2 + \dots + X_n^2)$ is an ancillary statistic. The trick is to look at

$$\mathsf{E}_{\theta}(X_1^2) = \mathsf{E}_{\theta} \Big\{ \frac{X_1^2}{X_1^2 + \dots + X_n^2} \cdot (X_1^2 + \dots + X_n^2) \Big\}.$$

The right-hand side can be factored as a product of expected values by Basu's theorem, i.e., Basu says T and U are independent, so $\mathsf{E}_{\theta}(UT) = \mathsf{E}_{\theta}(U)\mathsf{E}_{\theta}(T)$. Then $\mathsf{E}_{\theta}(U)$ is the quantity we want, and it equals

$$\mathsf{E}_{\theta} \Big\{ \frac{X_1^2}{X_1^2 + \dots + X_n^2} \Big\} = \frac{\mathsf{E}_{\theta}(X_1^2)}{\mathsf{E}_{\theta}(X_1^2 + \dots + X_n^2)} = \frac{\theta^2}{n\theta^2} = \frac{1}{n}.$$