
Stat 411 – Homework 04 Solutions

1. Problem 6.2.7 in HMC7. The PDF for the Gamma(4, θ) distribution is

fθ(x) =
1

6θ4
x3e−x/θ, x > 0, θ > 0.

(a) For the Fisher information, we first need second derivative of log-PDF:

∂2

∂θ2
log fθ(x) =

∂2

∂θ2

[
const− 4 log θ − x

θ

]
=

4

θ2
− 2x

θ3
.

If we recall that the expected value of a Gamma(α, β) random variable is αβ
(see middle of p. 158 in HMC7), then

I(θ) = −Eθ
[ ∂2
∂θ2

log fθ(X)
]

=
Eθ(2X)

θ3
− 4

θ2
= 2 · 4

θ2
− 4

θ2
=

4

θ2
.

(b) If X1, . . . , Xn
iid∼ Gamma(4, θ), then the MLE is found by maximizing the log-

likelihood:
`(θ) = logL(θ) = const− 4n log θ − nX̄/θ.

Setting the derivative equal to zero and solving for θ gives:

∂

∂θ
`(θ) = −4n

θ
+
nX̄

θ2
set
= 0 ⇐⇒ θ̂ =

X̄

4
.

If we recall that the variance of a Gamma(α, β) random variable is αβ2 (see
middle of p. 158 in HMC7), then

Vθ(θ̂) =
Vθ(X1)

16n
=

4θ2

16n
=
θ2

4n
.

Since Vθ(θ̂) and the Cramer–Rao lower bound [nI(θ)]−1 are the same, we
conclude that θ̂ is an efficient estimator of θ.

(c) The asymptotic distribution of
√
n(θ̂ − θ) is

√
n(θ̂ − θ) d→ N(0, θ2/4).

2. Problem 6.2.9 in HMC7. First we find the Fisher information for the PDF

fθ(x) =
3θ3

(x+ θ)4
, x > 0, θ > 0.

The second derivative of log-PDF is

∂2

∂θ2
[
const + 3 log θ − 4 log(x+ θ)

]
= − 3

θ2
+

4

(x+ θ)2
.

Then the Fisher information is

I(θ) = −Eθ
[ ∂2
∂θ2

log fθ(X)
]

=
3

θ2
− 4

∫ ∞
0

3θ3

(x+ θ)6
dx =

3

5θ2
.
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For X1, . . . , Xn
iid∼ fθ(x), let θ̂ = 2X̄. Then Eθ(θ̂) = 2Eθ(X1) and Vθ(θ̂) =

22Vθ(X1)/n. Therefore, we only need to find Eθ(X1) and Vθ(X1). These require
some calculus effort, but it’s not too bad. I’ll use a trick that helps us avoid
integration-by-parts.

Eθ(X1) =

∫ ∞
0

x · 3θ3

(x+ θ)4
dx

=

∫ ∞
0

[(x+ θ)− θ] 3θ3

(x+ θ)4
dx

=

∫ ∞
0

3θ3

(x+ θ)3
dx− θ

=

∫ ∞
θ

3θ3

y3
dy − θ [y = x+ θ]

=
θ

2
.

Similarly, we can get

Eθ(X
2
1 ) =

∫ ∞
0

x2 · 3θ3

(x+ θ)4
dx

=

∫ ∞
0

[(x+ θ)2 − 2θx− θ2] 3θ3

(x+ θ)4
dx

=

∫ ∞
0

(x+ θ)2
3θ3

(x+ θ)4
dx− 2θEθ(X1)− θ2.

Essentially the same work as above evaluates the remaining integral, and it simplifies
to Eθ(X

2
1 ) = θ2. Therefore, θ̂ is unbiased and

Vθ(θ̂) =
4

n

[
Eθ(X

2
1 )− Eθ(X1)

2
]

=
4

n
· 3θ2

4
=

3θ2

n
.

Consequently, the efficiency of θ̂ is

effθ(θ̂) =
[nI(θ)]−1

Vθ(θ̂)
=

5θ2/3n

3θ2/n
=

5

9
< 1.

3. The importance of Theorem 6.2.2 in HMC7 is that it gives an approximation the
sampling distribution of the MLE when n is sufficiently large. That is, for large n,
θ̂n is approximately normal with mean θ and variance [nI(θ)]−1. Since the goal of
statistical inference is to give an estimate of an unknown quantity θ, it helps to have
a summary of the precision of that estimate to go along with the estimate itself.
This precision summary is encoded by the sampling distribution of θ̂n. For example,
one may use the asymptotically approximate sampling distribution to construct a
confidence interval.

4. (Graduate only) Problem 6.2.10 in HMC7. Let X1, . . . , Xn
iid∼ N(0, θ), where θ > 0

denotes the variance. Let Y = c
∑n

i=1 |Xi|. The goal is to find c such that Y is an
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unbiased estimator of
√
θ. By linearity, it is clear that

Eθ(Y ) = c

n∑
i=1

Eθ(|Xi|) = cnEθ(|X1|).

To calculate Eθ(|X1|), take advantage of the symmetry of the normal PDF:

Eθ(|X1|) =

∫ ∞
−∞
|x| · 1√

2πθ
e−x

2/2θ dx = 2

∫ ∞
0

x · 1√
2πθ

e−x
2/2θ dx.

For the integral, use substitution (i.e., let u = x2/θ) so that

Eθ(|X1|) =
2
√
θ√

2π

∫ ∞
0

e−u du =

√
2

π
·
√
θ.

Therefore, Eθ(Y ) = cn
√

2/π
√
θ so taking c = n−1

√
π/2 makes Y and unbiased

estimator of
√
θ. Since the Xi’s are independent, so too are the |Xi|’s, and so

Vθ(Y ) = c2
n∑
i=1

Vθ(|Xi|) = cnVθ(|X1|).

To find Vθ(|X1|), we need Eθ(|X1|2) and Eθ(|X1|). The latter we already have, and
the former is the same as Eθ(X

2
1 ) which we know equals θ. Therefore,

Vθ(|X1|) = Eθ(|X1|2)− Eθ(|X1|)2 = θ − 2θ/π =
θ(π − 2)

π
,

and so

Vθ(Y ) = c2n
θ(π − 2)

π
=

1

n
· π

2
· θ(π − 2)

π
=
θ(π − 2)

2n
.

Recall the Fisher information calculation from class: I(θ) = 1/2θ2. Consequently,
the Cramer–Rao lower bound for estimating

√
θ is

LB =
[1
2
θ−1/2]2

nI(θ)]
=

θ

2n
,

and the efficiency of Y is

eff√θ(Y ) =
LB

Vθ(Y )
=

θ/2n

θ(π − 2)/2n
=

1

π − 2
< 1.
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