1. Problem 6.2.7 in HMC7. The PDF for the Gamma $(4, \theta)$ distribution is

$$
f_{\theta}(x)=\frac{1}{6 \theta^{4}} x^{3} e^{-x / \theta}, \quad x>0, \quad \theta>0 .
$$

(a) For the Fisher information, we first need second derivative of \log-PDF:

$$
\frac{\partial^{2}}{\partial \theta^{2}} \log f_{\theta}(x)=\frac{\partial^{2}}{\partial \theta^{2}}\left[\text { const }-4 \log \theta-\frac{x}{\theta}\right]=\frac{4}{\theta^{2}}-\frac{2 x}{\theta^{3}} .
$$

If we recall that the expected value of a $\operatorname{Gamma}(\alpha, \beta)$ random variable is $\alpha \beta$ (see middle of p. 158 in HMC7), then

$$
I(\theta)=-\mathrm{E}_{\theta}\left[\frac{\partial^{2}}{\partial \theta^{2}} \log f_{\theta}(X)\right]=\frac{\mathrm{E}_{\theta}(2 X)}{\theta^{3}}-\frac{4}{\theta^{2}}=2 \cdot \frac{4}{\theta^{2}}-\frac{4}{\theta^{2}}=\frac{4}{\theta^{2}} .
$$

(b) If $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{Gamma}(4, \theta)$, then the MLE is found by maximizing the loglikelihood:

$$
\ell(\theta)=\log L(\theta)=\text { const }-4 n \log \theta-n \bar{X} / \theta \text {. }
$$

Setting the derivative equal to zero and solving for θ gives:

$$
\frac{\partial}{\partial \theta} \ell(\theta)=-\frac{4 n}{\theta}+\frac{n \bar{X}}{\theta^{2}} \stackrel{\text { set }}{=} 0 \Longleftrightarrow \hat{\theta}=\frac{\bar{X}}{4} .
$$

If we recall that the variance of a $\operatorname{Gamma}(\alpha, \beta)$ random variable is $\alpha \beta^{2}$ (see middle of p. 158 in HMC 7), then

$$
\mathrm{V}_{\theta}(\hat{\theta})=\frac{\mathrm{V}_{\theta}\left(X_{1}\right)}{16 n}=\frac{4 \theta^{2}}{16 n}=\frac{\theta^{2}}{4 n}
$$

Since $\mathrm{V}_{\theta}(\hat{\theta})$ and the Cramer-Rao lower bound $[n I(\theta)]^{-1}$ are the same, we conclude that $\hat{\theta}$ is an efficient estimator of θ.
(c) The asymptotic distribution of $\sqrt{n}(\hat{\theta}-\theta)$ is $\sqrt{n}(\hat{\theta}-\theta) \xrightarrow{\mathrm{D}} \mathrm{N}\left(0, \theta^{2} / 4\right)$.
2. Problem 6.2.9 in HMC7. First we find the Fisher information for the PDF

$$
f_{\theta}(x)=\frac{3 \theta^{3}}{(x+\theta)^{4}}, \quad x>0, \quad \theta>0
$$

The second derivative of log-PDF is

$$
\frac{\partial^{2}}{\partial \theta^{2}}[\text { const }+3 \log \theta-4 \log (x+\theta)]=-\frac{3}{\theta^{2}}+\frac{4}{(x+\theta)^{2}}
$$

Then the Fisher information is

$$
I(\theta)=-\mathrm{E}_{\theta}\left[\frac{\partial^{2}}{\partial \theta^{2}} \log f_{\theta}(X)\right]=\frac{3}{\theta^{2}}-4 \int_{0}^{\infty} \frac{3 \theta^{3}}{(x+\theta)^{6}} d x=\frac{3}{5 \theta^{2}} .
$$

For $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} f_{\theta}(x)$, let $\hat{\theta}=2 \bar{X}$. Then $\mathrm{E}_{\theta}(\hat{\theta})=2 \mathrm{E}_{\theta}\left(X_{1}\right)$ and $\mathrm{V}_{\theta}(\hat{\theta})=$ $2^{2} \mathrm{~V}_{\theta}\left(X_{1}\right) / n$. Therefore, we only need to find $\mathrm{E}_{\theta}\left(X_{1}\right)$ and $\mathrm{V}_{\theta}\left(X_{1}\right)$. These require some calculus effort, but it's not too bad. I'll use a trick that helps us avoid integration-by-parts.

$$
\begin{aligned}
\mathrm{E}_{\theta}\left(X_{1}\right) & =\int_{0}^{\infty} x \cdot \frac{3 \theta^{3}}{(x+\theta)^{4}} d x \\
& =\int_{0}^{\infty}[(x+\theta)-\theta] \frac{3 \theta^{3}}{(x+\theta)^{4}} d x \\
& =\int_{0}^{\infty} \frac{3 \theta^{3}}{(x+\theta)^{3}} d x-\theta \\
& =\int_{\theta}^{\infty} \frac{3 \theta^{3}}{y^{3}} d y-\theta \quad[y=x+\theta] \\
& =\frac{\theta}{2}
\end{aligned}
$$

Similarly, we can get

$$
\begin{aligned}
\mathrm{E}_{\theta}\left(X_{1}^{2}\right) & =\int_{0}^{\infty} x^{2} \cdot \frac{3 \theta^{3}}{(x+\theta)^{4}} d x \\
& =\int_{0}^{\infty}\left[(x+\theta)^{2}-2 \theta x-\theta^{2}\right] \frac{3 \theta^{3}}{(x+\theta)^{4}} d x \\
& =\int_{0}^{\infty}(x+\theta)^{2} \frac{3 \theta^{3}}{(x+\theta)^{4}} d x-2 \theta \mathrm{E}_{\theta}\left(X_{1}\right)-\theta^{2}
\end{aligned}
$$

Essentially the same work as above evaluates the remaining integral, and it simplifies to $\mathrm{E}_{\theta}\left(X_{1}^{2}\right)=\theta^{2}$. Therefore, $\hat{\theta}$ is unbiased and

$$
\mathrm{V}_{\theta}(\hat{\theta})=\frac{4}{n}\left[\mathrm{E}_{\theta}\left(X_{1}^{2}\right)-\mathrm{E}_{\theta}\left(X_{1}\right)^{2}\right]=\frac{4}{n} \cdot \frac{3 \theta^{2}}{4}=\frac{3 \theta^{2}}{n} .
$$

Consequently, the efficiency of $\hat{\theta}$ is

$$
\operatorname{eff}_{\theta}(\hat{\theta})=\frac{[n I(\theta)]^{-1}}{\mathrm{~V}_{\theta}(\hat{\theta})}=\frac{5 \theta^{2} / 3 n}{3 \theta^{2} / n}=\frac{5}{9}<1
$$

3. The importance of Theorem 6.2 .2 in $\mathrm{HMC7}$ is that it gives an approximation the sampling distribution of the MLE when n is sufficiently large. That is, for large n, $\hat{\theta}_{n}$ is approximately normal with mean θ and variance $[n I(\theta)]^{-1}$. Since the goal of statistical inference is to give an estimate of an unknown quantity θ, it helps to have a summary of the precision of that estimate to go along with the estimate itself. This precision summary is encoded by the sampling distribution of $\hat{\theta}_{n}$. For example, one may use the asymptotically approximate sampling distribution to construct a confidence interval.
4. (Graduate only) Problem 6.2.10 in HMC7. Let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \mathrm{N}(0, \theta)$, where $\theta>0$ denotes the variance. Let $Y=c \sum_{i=1}^{n}\left|X_{i}\right|$. The goal is to find c such that Y is an
unbiased estimator of $\sqrt{\theta}$. By linearity, it is clear that

$$
\mathrm{E}_{\theta}(Y)=c \sum_{i=1}^{n} \mathrm{E}_{\theta}\left(\left|X_{i}\right|\right)=c n \mathrm{E}_{\theta}\left(\left|X_{1}\right|\right) .
$$

To calculate $\mathrm{E}_{\theta}\left(\left|X_{1}\right|\right)$, take advantage of the symmetry of the normal PDF:

$$
\mathrm{E}_{\theta}\left(\left|X_{1}\right|\right)=\int_{-\infty}^{\infty}|x| \cdot \frac{1}{\sqrt{2 \pi \theta}} e^{-x^{2} / 2 \theta} d x=2 \int_{0}^{\infty} x \cdot \frac{1}{\sqrt{2 \pi \theta}} e^{-x^{2} / 2 \theta} d x
$$

For the integral, use substitution (i.e., let $u=x^{2} / \theta$) so that

$$
\mathrm{E}_{\theta}\left(\left|X_{1}\right|\right)=\frac{2 \sqrt{\theta}}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-u} d u=\sqrt{\frac{2}{\pi}} \cdot \sqrt{\theta}
$$

Therefore, $\mathrm{E}_{\theta}(Y)=c n \sqrt{2 / \pi} \sqrt{\theta}$ so taking $c=n^{-1} \sqrt{\pi / 2}$ makes Y and unbiased estimator of $\sqrt{\theta}$. Since the X_{i} 's are independent, so too are the $\left|X_{i}\right|$'s, and so

$$
\mathrm{V}_{\theta}(Y)=c^{2} \sum_{i=1}^{n} \mathrm{~V}_{\theta}\left(\left|X_{i}\right|\right)=c n \mathrm{~V}_{\theta}\left(\left|X_{1}\right|\right)
$$

To find $\mathrm{V}_{\theta}\left(\left|X_{1}\right|\right)$, we need $\mathrm{E}_{\theta}\left(\left|X_{1}\right|^{2}\right)$ and $\mathrm{E}_{\theta}\left(\left|X_{1}\right|\right)$. The latter we already have, and the former is the same as $\mathrm{E}_{\theta}\left(X_{1}^{2}\right)$ which we know equals θ. Therefore,

$$
\mathrm{V}_{\theta}\left(\left|X_{1}\right|\right)=\mathrm{E}_{\theta}\left(\left|X_{1}\right|^{2}\right)-\mathrm{E}_{\theta}\left(\left|X_{1}\right|\right)^{2}=\theta-2 \theta / \pi=\frac{\theta(\pi-2)}{\pi}
$$

and so

$$
\mathrm{V}_{\theta}(Y)=c^{2} n \frac{\theta(\pi-2)}{\pi}=\frac{1}{n} \cdot \frac{\pi}{2} \cdot \frac{\theta(\pi-2)}{\pi}=\frac{\theta(\pi-2)}{2 n}
$$

Recall the Fisher information calculation from class: $I(\theta)=1 / 2 \theta^{2}$. Consequently, the Cramer-Rao lower bound for estimating $\sqrt{\theta}$ is

$$
\mathrm{LB}=\frac{\left[\frac{1}{2} \theta^{-1 / 2}\right]^{2}}{n I(\theta)]}=\frac{\theta}{2 n},
$$

and the efficiency of Y is

$$
\operatorname{eff}_{\sqrt{\theta}}(Y)=\frac{\mathrm{LB}}{\mathrm{~V}_{\theta}(Y)}=\frac{\theta / 2 n}{\theta(\pi-2) / 2 n}=\frac{1}{\pi-2}<1 .
$$

