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This article reviews some basic ideas of classical inference
and the roles they play in Basu’s theorem. The usefulness
of this theorem is demonstrated by applications to various
statistical problems.
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1. INTRODUCTION

Basu’s theorem is one of the most elegant results of clas-
sical statistics. Succinctly put, the theorem says: if T is
a complete sufficient statistic for a family of probability
measures P, and V is an ancillary statistic, then T and
V are independent. (See, for example, Lehmann 1983, p.
46, Casella and Berger 1990, p. 262; or the original source,
Basu 1955, theorem 2.) We often think of 7 as a parametric
family P = {Pp.0 € 1}, where 8 has dimension g, but it is
important to note that the theorem holds for more general
families P such as classes of continuous distributions.

Basu’s theorem is actually one of several theorems given
in Basu (1955) and Basu (1958). Theorem 1 of Basu (1955)
(updated in Basu 1958) states that ancillarity follows from
sufficiency and independence. The main result above is
taken from theorem 2 of Basu (1955) which actually uses
the concept of bounded completeness (see Sec. 2.1) rather
than completeness, but that is a minor broadening of the
basic result. Basu (1982) said that the historical interest
in these theorems was because they showed the connec-
tion between sufficiency, ancillarity, and independence, con-
cepts that previously had seemed unrelated. In a differ-
ent thread, Lehmann (1981) emphasized the connection be-
tween Basu’s theorem and completeness.

The main emphasis of this article is to illustrate the
wide variety of technical results that may be obtained from
Basu’s theorem. These applications are given in Section 3.
In Section 2 we review some of the basic definitions and
ideas from classical inference that are related to Basu’s the-
orem.
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2. STATISTICAL INFERENCE

The goal of statistical inference is to make statements
about the underlying distribution that generated a given ob-
served sample. Suppose the n-dimensional random vector
X = (X;...., X, ) represents the sample. We assume that
X has a distribution from some family P, but we do not
know the specific member, call it P, that generated X. The
basic goal is to determine F, based on X. In the case of
a parametric family. we need to determine the value of 8,
say 8y, that corresponds to the distribution of X.

To understand the role that Basu’s theorem plays in in-
ference, we first need to define some basic concepts.

2.1 Definitions

A sufficient statistic T 1s defined by the property that
the conditional distribution of the data X given T is the
same for each member of P. For discrete X, the density
of X factors into two parts: the conditional density of X
given T, which is the same for every member of P and
thus provides no information about FPy; and the density of
T, which contains all the information in the data that points
to Py as the distribution of X. It is thus reasonable that
statistical inference be based solely on the sufficient statistic
T, which is usually of much smaller dimension that the data
vector X,

Reduction to a sufficient statistic, however, is neither
unique nor guaranteed to yield maximum reduction. When
it exists, a minimal sufficient statistic achieves the greatest
reduction in data without losing information; that is, T is
minimal sufficient if it is sufficient and can be computed
from (is a function of} every sufficient statistic.

An ancillary statistic V' is one whose distribution is the
same for all members of 7. Therefore, V contains no in-
formation about the distribution of X.

A statistic T is said to be complete with respect to the
family P if there are no functions ¢ such that Eo(T) = 0
for all members of P. except o(t) = 0 a.e. P. (Bounded
completeness is a slightly more general concept. It restricts
the class of functions ¢ under consideration to be bounded,
allowing more families to have this property. Thus, com-
pleteness implies bounded completeness, but the distinction
is not important for the applications in this article.) The re-
lationship between completeness and sufficiency may now
be discussed.

2.2 Basu’s Theorem in Inference

The essential ditference between a sufficient (or even
minimal sufficient) statistic and a complete sufficient statis-
tic is that the suthicient statistic 7' may contain extraneous
information that is not relevant for determining F,. That
is. there may exist a function of 7" that is ancillary. On the
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other hand, Basu’s theorem tells us that if T is complete
in addition to being sufficient, then no ancillary statistics
can be computed from T (except, of course, constant func-
tions). Therefore, T has been successful in “squeezing out”
any extraneous information.

Note that minimality of T does not guarantee this
“squeezing out” but completeness does. Complete sufficient
statistics are, however, always minimal sufficient (Lehmann
1983, p. 46). A nice discussion of the ideas in this subsec-
tion is found in Lehmann (1981).

Consider, for example, a random sample from the
Laplace location family where

P = {H folai) : fole) = falz = 6).
=1

fo(r‘):%exp(ﬁﬂ), —xLr<ac. =< 0<x} .
The order statistic T = (X(y,.
but Vo= (X(,, - X(1)..... X(n) — X(»—1)) is ancillary even
though it may be obtained from 7.

Is T complete? Arguing from the contrapositive to Basu’s
theorem, we can say that since T and V' are not inde-
pendent (since V' is a function of T), then T is not a
complete sufficient statistic for P. A more typical method
of showing lack of completeness comes from noting that
E[X(,) — X1)] = c1, where ¢, just depends on fy(z) =
(1/2)exp(—|x|) and can be computed. Thus, T is not com-
plete because E¢(T) = 0 for all members of P, where
O(T) = X(n) — )((1) — Cq.

The Fisherian tradition suggests that when a sufficient
statistic is not complete, then we should condition on an-
cillary statistics for the purposes of inference. There are at
least two reasons for this. The first is so that probability
calculations are relevant to the inference to be made (Cox
1988, p. 316). The second reason is to “recover’” informa-
tion lost in reducing to a sufficient statistic (Basu 1964).

This approach runs into problems because there are many
situations where several ancillary statistics exist but there
is no “maximal ancillary statistic”” (Basu 1964). So which
ancillary statistic should one condition on?

Fortunately, when a complete sufficient statistic exists,
Basu’s theorem assures us that we need not worry about
conditioning on ancillary statistics because they are all in-
dependent of the complete sufficient statistic.

2.3 Examples of Complete Sufficient and Ancillary
Statistics

Before moving to applications, it may be helpful to re-
member that complete sufficient statistics exist for regu-
lar full rank exponential families (Lehmann 1983, p. 46).
These include, for example, the Poisson, gamma, beta. bi-
nomial, many normal distribution models (univariate, multi-
variate, regression, ANOVA, and so on), truncated versions
(Lehmann 1983, prob. 5.31, p. 68), and censored versions
(Bhattacharyya, Johnson, and Mehrotra 1977).

The order statistic (X1y..... Xiy,) from a random sam-
ple is sufficient for regular families and is complete suffi-

cient if P is formed from products of members of the set of
all continuous distributions or the set of all absolutely con-
tinuous distributions (Lehmann 1986, pp. 143-144). This is
very useful for applications to nonparametric problems.

In location models with densities of the form f(xz — 8),
random variables such as .X —6 are called pivotal quantities.
In scale models with densities of the form f(z/6)/6, X /6
is a pivotal quantity. Pivotal quantities are similar to an-
cillary statistics in that their distributions are the same for
each member of the family, but pivotals are not statistics
because their computation requires unknown quantities. In
fact, a common method of verifying ancillarity of V is to
re-express it as a function of a pivotal quantity W.

It is easy to show that all location-invariant statistics are
ancillary if P is formed trom a location family; all scale-
invariant statistics are ancillary if P is formed from a scale
family; and all location-and-scale-invariant statistics are an-
cillary if P is formed from a location-and-scale family.

3. TECHNICAL APPLICATIONS

Basu’s theorem may be applied to a variety of problems.
A selective presentation follows.

3.1 Independence of X and S

Suppose X represents a random sample from a N (p. o),
distribution, where o2 is known. Standard exponential fam-
ily results yield that the sample mean X is complete suffi-
cient for this normal location family. Moreover, the residual
vector V = (X, — X.....X,, — X) is seen to be ancillary
because it i1s location-invariant and so may be written as
(X7 —p) = (X —p)..... (X, —p) — (X — p)), which is a
function of the pivotal vector W = (X7 — ., ..., X, — p)
whose distribution clearly does not depend on p. Thus, V'
has the same distribution for each .

Basu’s theorem now tells us that since X is complete suf-
ficient and S? is a function of the ancillary statistic V, then
X and S? are independent. Although we assumed that o2
is known, this result holds true for any normal distribution
since our knowledge of 02 has nothing to do with the joint
distribution of X and S”. In fact, assuming o2 unknown
only unnecessarily complicates the task of finding the joint
distribution of X and S2.

In general a key to applying Basu’s theorem is decid-
ing which parameters to assume known and which to leave
unknown.

3.2 Monte Carlo Swindles

A Monte Carlo swindle (Johnstone and Velleman 1985)
is a simulation technique that allows a small number of
replications to produce statistical accuracy at the level one
would expect from a much larger number of replications.
In some swindles. Basu’s theorem can be used to derive the
basic independence needed to define the method.

Suppose, for example, that we want to estimate the vari-
ance of the sample median A of a random sample X of
size n from a N(;:. o) distribution. The straightforward ap-
proach is to generate N samples of size n from a N(u,0?)
distribution, compute the median for each sample resulting
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in Ay..... Mx, and then compute the sample variance of
those medians as the estimate of var(}).

The Monte Carlo swindle used here is to estimate
var(M — X) (instead of var(1f)) by the N Monte Carlo
samples and add var(X) = 0%/n to get a more precise esti-
mate of var(Af).

Why does the swindle work? First note that as in the pre-
vious subsection, X and V = (X, — X...., X, — X) are
independent by Basu’s theorem because X is complete suf-
ficient and V is ancillary. Consequently, X is also indepen-
dent of the median of V', which is median(X; -X...., X, —
X) =M — X. Hence

var(M) = var(M — X + X) = var(M — X) + var(X).

Thus, from the simulation we would find the sample vari-
ance of M, — X,.....] My — X v and add it to o2 /n to get
our estimate of var(4{).

To see that the swindle estimate is more precise than the
straightforward estimate, note that the variances of these
estimates are approximately 2[var(M — X)]?/(N — 1) and
2[var(M)]?/(N — 1), respectively, due to the asymptotic
normality of A/ — X and M. Thus, the swindle estimate
is seen to have smaller variance than the first approach
since var(M — X) < var(}) due to the high correlation
between 3/ and X. In fact the asymptotic correlation is
V/2/m = .798, with var(X)/var(M) ~ 2/7 for large n. The
result is var(M — X)/var(M) ~ .36 for large n.

More intuitively, we note that the Monte Carlo swindle
approach is more efficient because the var(X) = o2 /n con-
tribution to var(M) is much larger than the contribution
from var(A/ — X) that is being estimated by simulation.
The error in estimation by simulation is therefore limited
to a very small part of var(3f).

3.3 Moments of Ratios

It is easy to derive the following simple result: if X/Y" and
Y are independent and appropriate moments exist, then

-\ K vk
E(£> - BX 1)
Y E(YFk)
We now use Basu’s theorem and (1) in several applications.
3.3.1 Score Tests
In a number of testing problems, the score statistic has
the form (3~ X;)?/3" X? and is typically compared to a
chi-squared distribution with one degree of freedom. In
a particular example from Liang (1985), Zhang and Boos
(1997) discovered by simulation that this asymptotic test-
ing procedure is conservative in small samples; that is, the
7 critical values are too large on average. Initially, this re-
sult seems counter-intuitive since the form of the statistic
appears closer to that of a #? statistic than to a Z2 statistic.
To investigate further, we may simplify the problem by
assuming that X is a random sample from a N(u, o2) dis-
tribution with ¢ unknown and that the goal is to test the
null hypothesis x = 0 using the statistic

e 2
2 (5" X,)? _ nX
" e

T

220 General

Basu’s theorem can help us calculate the null moments of
t2.

If X is a random sample from the scale family
N(0.0%), then T = > X? is complete sufficient and
V= (3 X;)?/3 X? = t? is ancillary because it is scale-
invariant and so may be written as the ratio of the two
pivotal quantities (3~ X,/5)? and > (X,/c)?. Basu’s theo-
rem therefore yields independence of 7" and V. In addition,
result (1) tells us that

E(VF) = E[(3 X:)*]

E[(C XD

so that the mean and variance of 2 are 1 and 2 —6/(n + 2).
Considering that the mean and variance of the y? distribu-
tion are 1 and 2, respectively, we can see that comparing t2
to the percentiles of a x7 distribution will give conservative
test levels. In a class setting, it might be worth mentioning
than an exact solution to this simplified testing problem is
to transform monotonically to the square of the usual one
sample t statistic and use F'(1,n — 1) distribution critical
values.

3.3.2  Minimum Variance Unbiased Estimation

Suppose that X is a random sample from a Gamma(a, 3)
distribution when « 1is known. The search for minimum
variance unbiased estimators is limited to functions of
T =3 X,, since T is a complete sufficient statistic. One
way to get unbiased functions of 7' is to use conditional
expectations.

Consider, for example, X, the largest order statistic.
If aX(,, + b is unbiased for the quantity to be estimated,
then a minimum variance unbiased estimator is based on the
the conditional expectation of X,,, given 7. Basu’s theo-
rem helps us find this conditional expectation. Because T
is complete sufficient and V' = X,,/T is ancillary (it is
scale-invariant), 7" and V" are also independent. Thus,

; . T o

Moreover, using result (1) we have that E(V) =
E(X ) /E(T).

3.4 Behrens-Fisher Problem

Suppose that X;,....X,, is a random sample from
N(uy.0?) and Yi..... Y, is a random sample from
N{us2,0%). When no assumption is made that o7 = o3, the
testing situation Hy : p; = po is called the Behrens—Fisher
problem. Numerous approaches have been proposed includ-
ing Welch’s solution (see Wang 1971): compare

X-Y
\/ﬁ +Ei

m n

f = -

to a t distribution with estimated degrees of freedom f.
Wang (1971) showed how to calculate the exact probability
of a Type I error for Welch’s solution:

Pty > tayi=Pltip) > h(o.m.n, S3?/S83)).
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where / is a somewhat messy function,

. XY
f(/)) - fr1 (m—1)524+(n—1)S2/p ’
ff 1 P T - 2!
\/ (m - n ) (m+n—2)

and p = 02/0%. The key to evaluating this probability is to
note that #(p) has a t distribution with m + n — 2 degrees
and that t(p) is independent of S%/53.

But why are #(p) and S?/52 independent? This fact was
merely stated in Wang (1971) without argument. If p is as-
sumed known, then S7/.53 is ancillary, and ¢(p) is a function
of the complete sufficient statistic T = (X,Y. (m — 1)S? +
(n—1)S%/p). Basu’s theorem then says that ¢(p) and S?/S%
are independent. As with the example in Section 3.1, the as-
sumption that p is known has no consequence on the joint
distribution of ¢(p) and S?/S2; so the result holds true even
in the case that p is unknown.

As previously mentioned the trick in many applications
is deciding what to assume is known in order to get both a
useful complete sufficient statistic and an ancillary statistic.
Consider, for example, assuming that p is unknown. Then
the complete sufficient statistic is T = (X, Y. 5%, 57), and
while S?/57 is a function of T', ¢{p) is not ancillary (even
though it is pivotal under Hy).

{Received January 1997. Revised December 1997.]
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