Stat 512: Notes from Professor Ouyang*
 Jennifer Pajda-De La O

Fall 2014

1 10/3/2014

Definition 1. Let $(\Omega, \mathscr{B}, \mathbb{P})$ be a probability space. A stochastic process is a family of random variables on $(\Omega, \mathscr{B}, \mathbb{P})$ is $\left\{X_{t}\right\}_{t \in T}$. Here T is an index set. Typically $T=\{0,1,2, \ldots\}$, a sequence of random variables or $T=[0, \infty)$, a continuous family of random variables.

Q1: How to specify a stochastic process?

1. How to specify a Random Variable?

Suppose we have a probability space $(\Omega, \mathscr{B}, \mathbb{P})$ and X is a random variable on $(\Omega, \mathscr{B}, \mathbb{P})$.
What do we mean by specifying that X is a standard Gaussian $N(0,1)$?
Look at

$$
\mathbb{P}\{X \in B\}=\int_{B} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x=\mathbb{P} \circ X^{-1}(B)
$$

Here, $X:(\Omega, \mathscr{B}, \mathbb{P}) \rightarrow(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ induces a measure $\mathbb{P} \circ X^{-1}$. We need to specify that $\mathbb{P} \circ X^{-1}(B)$ is given by something, i.e. we need to specify the measure that it induces.
2. What do we mean by (X, Y) is a Gaussian with mean 0 and covariance $\left[\begin{array}{ll}\cdot & \cdot \\ . & \cdot\end{array}\right]$? Here $(X, Y):(\Omega, \mathscr{B}, \mathbb{P}) \rightarrow\left(\mathbb{R}^{2}, \mathscr{B}\left(\mathbb{R}^{2}\right)\right)$, where the induced measure is $\mathbb{P} \circ(X, Y)^{-1}$ and

$$
\begin{aligned}
\mathbb{P} \circ(X, Y)^{-1} & =\iint_{B_{1} \times B_{2}}\left(\frac{1}{\sqrt{2 \pi}}\right)^{2} e^{-\cdots} d x d y \\
& =\mathbb{P}\left\{X \in B_{1} \text { and } Y \in B_{2}\right\}
\end{aligned}
$$

3. For a stochastic process, to specify the distribution of it, we just give all the finite dimensional distributions. Let μ be the measure on \mathbb{R}^{k}. Then

$$
\mu_{t_{1}, t_{2}, \ldots, t_{k}}\left(F_{1} \times F_{2} \times \cdots \times F_{k}\right)=\mathbb{P}\left\{X_{t_{1}} \in F_{1}, X_{t_{2}} \in F_{2}, \ldots, X_{t_{k}} \in F_{k}\right\}
$$

for all $t_{1}, t_{2}, \ldots, t_{k} \in T$ and $t_{1}<t_{2}<\cdots<t_{k}$ (only pick a finite number).

[^0]Q2: Given a family of measures $\mu_{t_{1}, t_{2}, \ldots, t_{k}}$ where $t_{1}, t_{2}, \ldots, t_{k} \in T$, how to know there is indeed a stochastic processes X_{t} such that

$$
\mathbb{P}\left\{X_{t_{1}} \in F_{1}, X_{t_{2}} \in F_{2}, \ldots, X_{t_{k}} \in F_{k}\right\}=\mu_{t_{1}, \ldots, t_{k}}\left(F_{1} \times F_{2} \times \cdots \times F_{k}\right) ?
$$

Theorem 1. (Kolmogorov's Extension Theorem) Suppose we have a family of probability measures which is given by $\mu_{t_{1}, \ldots, t_{k}}$, a measure on $\mathbb{R}^{k}, t_{1}, t_{2}, \ldots, t_{k} \in T$, and $t_{1}<t_{2}<\cdots<t_{k}$ such that for any $u_{1}<u_{2}<\cdots<u_{l}<t_{1}<s_{1}<t_{2}<s_{2}<\cdots<t_{n}<s_{n}<v_{1}<v_{2}<\cdots<$ v_{m} (a sequence of times), then we have the measure

$$
\begin{aligned}
\mu_{u_{1} \ldots u_{l} t_{1} s_{1} \ldots t_{n} s_{n} v_{1} \ldots v_{m}} & (\underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{l \text { components }} \times \underbrace{F_{1}}_{\text {for } t_{1}} \times \underbrace{\mathbb{R}}_{\text {for } s_{1}} \times F_{2} \times \mathbb{R} \times \cdots \times F_{n} \times \mathbb{R} \times \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{m \text { components }}) \\
& =\mu_{t_{1}, \ldots, t_{k}}\left(F_{1} \times \cdots F_{k}\right) \text { Compatibility Property }
\end{aligned}
$$

then there is a probability space $(\Omega, \mathscr{B}, \mathbb{P})$ and a stochastic process such that

$$
\mathbb{P}\left\{X_{t_{1}} \in F_{1}, \ldots, X_{t_{k}} \in F_{k}\right\}=\mu_{t_{1}, \ldots, t_{k}}\left(F_{1} \times \cdots F_{k}\right) .
$$

Interpretation: If we have a measure μ (distribution), then as long as it satisfies some properties, it has a probability space and a stochastic process.
Example 1. Do we have two random variables X_{1} and X_{2} such that (X_{1}, X_{2}) as a random vector is Gaussian? So $\mu_{1,2}$ is a Gaussian measure on \mathbb{R}^{2}. And X_{1} is Bernoulli, i.e. μ_{1} is a Bernoulli on \mathbb{R}^{1}. No, because all marginals should be Gaussian:

$$
\mu_{1,2}\left(F_{1} \times \mathbb{R}\right) \neq \mu_{1}\left(F_{1}\right)
$$

Example 2. (Brownian Motion - BM)
Definition 2. A Brownian motion starting from 0 is a family of random variables $\left\{B_{t}\right\}_{t \geq 0}$ such that

1. $B_{0}=0$
2. It has independent increments. If we have

then $B_{t_{1}}-B_{t_{0}=0}, B_{t_{2}}-B_{t_{1}}, \ldots, B_{t_{n}}-B_{t_{n-1}}$ are independent.
3. $B_{t}-B_{s} \sim \mathrm{~N}(0, t-s)$

Idea of Brownian Motion:

From 0 to s the displacement $\sim \mathbf{N}(0, s)$. The process keeps moving (as shown above by the red line). The new displacement between s and $t \sim \mathrm{~N}(0, t-s)$.
How do we know we have a process? We need to specify the distributions with Kolmogorov's Extension Theorem and make sure we have compatibility. The requirements are 1-3 from the definition of Brownian Motion. We have

$$
\begin{aligned}
\mu_{t_{1}, t_{2}, \ldots, t_{k}} & \left(F_{1} \times F_{2} \times \cdots \times F_{k}\right) \\
& \stackrel{\text { want }}{=} \mathbb{P}\left\{B_{t_{1}} \in F_{1}, B_{t_{2}} \in F_{2}, \ldots, B_{t_{k}} \in F_{k}\right\} \\
& =\int_{F_{1}} \mathbb{P}\left(t_{1}, 0, X_{1}\right) d X_{1} \int_{F_{2}} \mathbb{P}\left(t_{2}-t_{1}, X_{1}, X_{2}\right) d X_{2} \cdots \int_{F_{k}} \mathbb{P}\left(t_{k}-t_{k-1}, X_{k-1}, X_{k}\right) d X_{k} .
\end{aligned}
$$

Note that the last line of the above is compatible and on \mathbb{R}^{k}.

$2 \quad 10 / 10 / 14$

Recall: $(\Omega, \mathscr{B}, \mathbb{P})$. A stochastic process is a collection of random variables $\left\{X_{t}\right\}_{t \geq 0}, T=$ $\{0,1,2, \ldots, n, \ldots\}$ or $T=[0, \infty)$.

Theorem 2. (Kolmogorov's Extension Theorem) Given a family of probability measures $\mu_{t_{1}, t_{2}, \ldots, t_{n}}$ on $\mathbb{R}^{n}, t_{1}<t_{2}<\cdots<t_{n}$ such that

$$
\mu_{s_{0} t_{1} s_{1} t_{2} s_{2} \cdots s_{n-1} t_{n} s_{n}}\left(\mathbb{R} \times F_{1} \times \mathbb{R} \times F_{2} \times \cdots \times \mathbb{R} \times F_{n} \times \mathbb{R}\right)=\mu_{t_{1} t_{2} \cdots t_{n}}\left(F_{1} \times F_{2} \times \cdots \times F_{n}\right)
$$

where $\mu_{s_{0} t_{1} s_{1} t_{2} s_{2} \cdots s_{n-1} t_{n} s_{n}}$ is a probability measure on $\mathbb{R}^{2 n+1}$. Then there is a probability space $(\Omega, \mathscr{B}, \mathbb{P})$ and a stochastic process $\left\{X_{t}\right\}$ such that

$$
\mathbb{P}\left\{X_{t_{1}} \in F_{1}, X_{t_{2}} \in F_{2}, \ldots, X_{t_{n}} \in F_{n}\right\}=\mu_{t_{1}, \ldots, t_{n}}\left(F_{1} \times F_{2} \times \cdots \times F_{n}\right)
$$

Intuition: If we want a distribution to have a process like this, then the given distribution should have compatibility and then we will have the stochastic process.

Definition 3. A Gaussian process is a stochastic process $\left\{X_{t}\right\}$ such that for any $0 \leq t_{1}<$ $t_{2}<t_{3}<\cdots<t_{n},\left(X_{t_{1}}, X_{t_{2}}, \ldots, X_{t_{n}}\right)$ is a Gaussian vector.

For Gaussian vectors, to specify the distribution, we only need to specify the mean and the covariance. For simplicity, we only look at Gaussian processes with mean 0, that is, $\mathbf{E} X_{t}=0, \forall t \in T$. This is a centered Gaussian because the mean is 0 . We only look at the
mean because X_{t} is Gaussian, $\mathbf{E} X_{t}=m(t)$. Then take $Y_{t}=X_{t}-m(t)$ and now we have a centered Gaussian. The covariances are still the same.
For a centered Gaussian Process, to specify the distribution of $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$ for any $t_{1}<$ $t_{2}<\cdots<t_{n}$, we only need to specify the covariance of $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$, that is

$$
a_{t_{i} t_{j}}=\mathbf{E} X_{t_{i}} X_{t_{j}}, 1 \leq i, j \leq n .
$$

If you look at $\left(a_{t_{i} t_{j}}\right)_{i, j=1}^{n}$, this should be

1. symmetric
2. non-negative definite

These properties guarantee there is a Gaussian process, and that the Gaussian process has this covariance. This is further reduced to specify a function $C(s, t)$, where C is the covariance. We want $\mathbf{E} X_{t} X_{s}=C(s, t)$.

1. Symmetric condition: we want $C(s, t)=C(t, s)$
2. We want $\sum_{i, j=1}^{n} b_{i} C\left(t_{i}, t_{j}\right) b_{j} \geq 0$ for all $b_{1}, \ldots, b_{n} \in \mathbb{R}$ and all choices of t_{1}, \ldots, t_{n}.

Example 3. Why do we have compatibility/consistency? Take

$$
\mu_{t_{1} t_{2} t_{3} t_{4} t_{5}}\left(F_{1} \times F_{2} \times F_{3} \times F_{4} \times F_{5}\right)=\mathbb{P}\left\{B_{t_{1}} \in F_{1}, B_{t_{2}} \in F_{2}, B_{t_{3}} \in F_{3}, B_{t_{4}} \in F_{4}, B_{t_{5}} \in F_{5}\right\}
$$

where $B_{t_{1}}, \ldots, B_{t_{5}}$ is a centered Gaussian with covariance

$$
\left[\begin{array}{cccc}
C\left(t_{1}, t_{1}\right) & C\left(t_{1}, t_{2}\right) & \cdots & C\left(t_{1}, t_{5}\right) \\
\vdots & \vdots & \ddots & \vdots \\
C\left(t_{5}, t_{1}\right) & C\left(t_{5}, t_{2}\right) & \cdots & C\left(t_{5}, t_{5}\right)
\end{array}\right]
$$

Also,

$$
\mu_{t_{2}, t_{4}}\left(F_{2} \times F_{4}\right)=\mathbb{P}\left\{\bar{B}_{t_{2}} \in F_{2}, \bar{B}_{t_{4}} \in F_{4}\right\},
$$

where $\left(\bar{B}_{t_{2}}, \bar{B}_{t_{4}}\right)$ is a centered Gaussian with covariance

$$
\left[\begin{array}{ll}
C\left(t_{2}, t_{2}\right) & C\left(t_{2}, t_{4}\right) \\
C\left(t_{4}, t_{2}\right) & C\left(t_{4}, t_{4}\right)
\end{array}\right] .
$$

Consistency is to pick some of F_{i} to be \mathbb{R}, i.e., is

$$
\mathbb{P}\left\{B_{t_{1}} \in \mathbb{R}, B_{t_{2}} \in F_{2}, B_{t_{3}} \in \mathbb{R}, B_{t_{4}} \in F_{4}, B_{t_{5}} \in \mathbb{R}\right\}=\mathbb{P}\left\{\bar{B}_{t_{2}} \in F_{2}, \bar{B}_{t_{4}} \in F_{4}\right\} ?
$$

We have that

$$
\mathbb{P}\left\{B_{t_{1}} \in \mathbb{R}, B_{t_{2}} \in F_{2}, B_{t_{3}} \in \mathbb{R}, B_{t_{4}} \in F_{4}, B_{t_{5}} \in \mathbb{R}\right\}=\mathbb{P}\left\{B_{t_{2}} \in F_{2}, B_{t_{4}} \in F_{4}\right\}
$$

because when we have $\in \mathbb{R}$, it is no longer a restriction. It is still a Gaussian vector with appropriate covariance (delete appropriate rows and columns), which is the same as the other covariance. So they have the same distribution, so we have consistency.

Example 4. Brownian Motion $\left\{B_{t}\right\}_{t \geq 0}$ is called a Brownian Motion starting from 0 if

1. $B_{0}=0$
2. Independent Increments (see diagram from last time)
3. $B_{t}-B_{s} \sim \mathrm{~N}(0, t-s)$

Question: Do we have a process with these properties?
Answer: Check the covariance function for $t>s$.

$$
\begin{aligned}
C(t, s)= & \mathbf{E} B_{t} B_{s} \\
= & \mathbf{E}\left(B_{t}-B_{s}+B_{s}\right) B_{s} \\
= & \mathbf{E}\left(B_{t}-B_{s}\right) B_{s}+\mathbf{E} B_{s}^{2} \\
= & \mathbf{E}\left(B_{t}-B_{s}\right) \mathbf{E} B_{s}+s, \text { since } B_{t}-B_{s} \text { is independent of } B_{s} \\
& \quad \text { and since } \mathbf{E} B_{s}=0, \mathbf{E} B_{s}^{2}=\mathbf{V} B_{s}^{2}=s-0=s \\
= & s \wedge t
\end{aligned}
$$

which is symmetric. Why is it non-negative definite? We need to show $\sum_{i, j=1}^{n} b_{i} C\left(t_{i}, t_{j}\right) b_{j} \geq 0$ for all $b_{1}, \ldots, b_{n} \in \mathbb{R}$ and for all t_{1}, \ldots, t_{n}.

$$
\begin{aligned}
\sum_{i, j=1}^{n} b_{i} C\left(t_{i}, t_{j}\right) b_{j} & =\sum_{i, j=1}^{n} b_{i}\left(t_{i} \wedge t_{j}\right) b_{j} \\
& =\sum_{i, j=1}^{n}\left[b_{i} b_{j} \int_{0}^{\infty} 1_{\left[0, t_{i}\right]}(u) 1_{\left[0, t_{j}\right]}(u) d u\right] \\
& =\int_{0}^{\infty}\left[\sum_{i, j=1}^{n}\left(b_{i} 1_{\left[0, t_{i}\right]}(u)\right)\left(b_{j} 1_{\left[0, t_{j}\right]}(u)\right)\right] d u \\
& =\int_{0}^{\infty}\left(\sum_{i=1}^{n} b_{i} 1_{\left[0, t_{i}\right]}(u)\right)^{2} d u \\
& \geq 0
\end{aligned}
$$

So we do have a process, and we call this process Brownian Motion.
Question: Why is Brownian Motion continuous in some sense?
Definition 4. Let X_{t}, Y_{t} be two stochastic processes. We say X_{t} and Y_{t} is a modification of each other if $\mathbb{P}\left[X_{t}=Y_{t}\right]=1$ for every $t \in T$ almost surely, i.e. it is the same process in the sense that the distribution is the same.

Theorem 3. A Brownian Motion always has a continuous modification, i.e. fix $\omega \in \Omega$, then $X_{t}(\omega)$ becomes a function of t. This is the sample path of the process. If the sample path is continuous almost surely, then the process is continuous.

Theorem 4. (Kolmogorov's Continuity) If X_{t} is a stochastic process, suppose $\mathbf{E}\left|X_{t}-X_{s}\right|^{\alpha} \leq$ $C|t-s|^{1+\beta}$ for some $\alpha, \beta>0$. Then X_{t} has a continuous modification.

Example 5. Suppose X_{t} is a stochastic process (we don't know if it is continuous). Let T be a random variable of the continuous type. That is, $\mathbb{P}[T=t]=0$. Let

$$
Y_{t}(\omega)= \begin{cases}X_{t}(\omega), & \text { not at } T(\omega) \\ \infty, & \text { at } T(\omega)\end{cases}
$$

We look at $Y_{t}(\omega)$ and the sample path. An example of this is shown below.

Then look at $T(\omega)$.

$$
\mathbb{P}\left[X_{t}=Y_{t}\right]=1-\mathbb{P}[T(\omega)=t]=1
$$

[^0]: *This version: November 25, 2014

