Fall 2014 Course Announcement Stat 512: Advanced Statistical Theory II

INSTRUCTOR. Dr. Ryan Martin Department of Mathematics, Statistics, and Computer Science Email: rgmartin@uic.edu URL: www.math.uic.edu/~rgmartin

LECTURES. MWF 9:00–9:50am (probably).

TARGET AUDIENCE. PhD students in statistics, mathematics, computer science, biostatistics, economics, and other related fields.

PREREQUISITE. Stat 511 and some computing background (e.g., Stat 451).

TEXTBOOK. Some good books from which some course material will be taken are listed below. The (\star) marks the book with probably the broadest coverage, and will be the "required text." The others are available for free electronically (with UIC netid).

van der Vaart, Asymptotic Statistics, 1998. (\star)

Ghosh and Ramamoorthi, Bayesian Nonparametrics, 2003.

Tsybakov, Introduction to Nonparametric Estimation, 2004.

Kosorok, Introduction to Empirical Processes and Semiparametric Inference, 2008.

DasGupta, Asymptotic Theory of Statistics and Probability, 2008.

Bühlmann and van de Geer, Statistics for High-Dimensional Data, 2010.

COURSE OBJECTIVE. Students successfully completing this course will be well prepared for research in statistical theory and methodology.

TENTATIVE COURSE PLAN. Lectures will cover some select topics in modern statistical theory. For example, large-sample theory for general M-estimators, empirical process theory, and non- and semi-parametric problems from both Bayesian and non-Bayesian perspectives, and more, depending on time and interests.

GRADES. Grades will be based on homework, a project, and "class participation."

COURSE PROJECT. Students will review existing literature on a particular topic of interest and present a summary of this review both orally and in writing. Details about the project will be given later. A number of suggested topics are given in the box.

empirical likelihood	composite likelihood	bootstrap
error-in-variables	high-dim decision theory	multiple testing
variable/model selection	nonparametric regression	density estimation
mixture models	local asymptotic normality	empirical processes
semiparametric inference	foundations	model misspecification
constrained inference	Gaussian processes, RKHS	higher-order likelihood
machine learning	stochastic processes	Bayesian priors