Math 160 Spring 2010, Lowman, Week 15 Monday
This is a listing of an Octave session (Matlab was used in the classroom) used in Monday's lecture.

Note: Octave is a Matlab clone and is a free downlowd for Windows, Macs and Linux. Matlab is available in the campus PC-Labs. Both Octave and Matlab were used in lectures for linear algebra. It is assumed that students can repeat the following on Octave or Matlab.

Note: In Octave, comment lines begin with \# symbol and in Matlab comment
lines begin with the \% symbol. If you use Matlab replace the \#'s with \%'s
octave-3.0.5:19> \# math160s10 Lowman, w15L1
octave-3.0.5:19> \#Markov process problem
octave-3.0.5:19> \#Rusty Rent-0-Car has offices in NYC and LA. Customers can make local
rentals or one-way rentals to
octave-3.0.5:19> \#the other location. Each month: $1 / 2$ of the cars that start the month in
NYC end in LA ans $1 / 3$ of the cars
octave-3.0.5:19> \#that start the month in LA end up in NYC. At the start of the operation Tusty has 1000 cars in each city.
octave-3.0.5:19> \#
octave-3.0.5:19> \#Find the state matrix (distributin matrix) and monthly transition matrix. octave-3.0.5:19> \#Find Xs the stable state and As the stable matrix.
octave-3.0.5:19> \#Find the state matrix, and the number of cars in each city for different
months.
octave-3.0.5:19> \#Find the transition matrix that takes a state from month 0 to month n
octave-3.0.5:19> \#
octave-3.0.5:19> $n=2000$
$\mathrm{n}=2000$
octave-3.0.5:20> \#x0 the initial state contains the fraction of cars in each city octave-3.0.5:20> x0 = [1/2;1/2]
x0 =
0.50000
0.50000
octave-3.0.5:21> \#n0 = x0*n gives the number of cars in each city at month 0 .
octave-3.0.5:21> n0 = x0 * n
n0 =

1000
1000
octave-3.0.5:22> \# a the transition matrix contains the fracion of cars that start in one city and end in another city
octave-3.0.5:22> \# for any month. Here the columns and rows are labeled N=R1 and C1 and
L=R2 and C2
octave-3.0.5:22> $a=[1 / 21 / 3 ; 1 / 22 / 3]$
a =

0.50000	0.33333
0.50000	0.66667

octave-3.0.5:23> \# note: the columns of a and xi must add to one and be non-negative.
octave-3.0.5:23> \# x1 = $a^{*} x 0$ is the state matrix at the end of month 1
octave-3.0.5:23> x1 = a * x0
x1 =
0.41667
0.58333
octave-3.0.5:24> \# xl gives the distribution (fractions) of cars in each city at the end of month 1
octave-3.0.5:24> \# the number of cars in each city at the end of month $\mathrm{n}=1$ is $\mathrm{n} 1=\mathrm{x} \mathrm{I}^{*} \mathrm{n}$ octave-3.0.5:24> n1 = x1*n
n1 =
833.33
1166.67
octave-3.0.5:25> \# at the end of month $n=2$
octave-3.0.5:25> $x 2=a{ }^{*} x 1$
x2 =
0.40278
0.59722
octave-3.0.5:26> n2 = x2 * n
n2 =
805.56
1194.44
octave-3.0.5:27> \# a2 = $\mathrm{a}^{\wedge} 2$ is the transition matrix from state $\mathrm{n}=0$ to state $\mathrm{n}=1$
octave-3.0.5:27> \# x2 = a2 * x0 is an alternate way to find x2
octave-3.0.5:27> a2 = a^2
a2 =
$\begin{array}{ll}0.41667 & 0.38889 \\ 0.58333 & 0.61111\end{array}$
octave-3.0.5:28> x2 = a2 * x0
x2 =
0.40278
0.59722
octave-3.0.5:29> n2 = x2 * n
n2 =
805.56
1194.44
octave-3.0.5:30> \# x2 gives the fraction of cars in each city at $n=2$
octave-3.0.5:30> \# n2 gives the number of cars in each city at $n=2$ (round to nearest car).
octave-3.0.5:30> \# x3 = a * x3 or use $x 3=a^{\wedge} 3$ * $x 0$,
octave-3.0.5:30> $x 3=a * x 2$
x3 =
0.40046
0.59954
octave-3.0.5:31> $x 3=a^{\wedge} 3 * x 0$
x3 =
0.40046
0.59954
octave-3.0.5:32> \# a3 = $a^{\wedge} 3$ is the transition matrix from state $x 0$ to $x 3$
octave-3.0.5:32> a3 = a^3
a3 =
0.40278
0.39815
0.59722
0.60185
octave-3.0.5:33> \# eventially the system will reach a stable state xs where the distribution of cars in each city will
octave-3.0.5:33> \# no longer change. The number of cars in each city will stay the same from month to month.
octave-3.0.5:33> \# When this happens an = a^n will also stop changing giving the stable matrix as.
octave-3.0.5:33> \# when the system reaches a stable state $x s=a * x s=>$ transition matrix has no effect,
octave-3.0.5:33> \# and as $=$ a $*$ as.
octave-3.0.5:33> \# In addition the columns of as are the same as xs.
octave-3.0.5:33> \# This gives an easy way to find xs and as.
octave-3.0.5:33> \# (1) raise a to a high power
octave-3.0.5:33> \# (2) check by increasing the power by 1 to see if there is no change. Try higher powers until no change.
octave-3.0.5:33> \# (3) as = a^(high power) and $x s$ is a column of as.
octave-3.0.5:33> \# The number of cars in each city when in a stable state is ns $=x s * n$
octave-3.0.5:33> \#
octave-3.0.5:33> \# An alternate method is solve for xs by solving:
octave-3.0.5:33> \# a ${ }^{*}$ xs $=$ xs where the sum of xs elements must add to one. This was also
octave-3.0.5:33> \# demonstrated in class.
octave-3.0.5:33> \#
octave-3.0.5:33> \# Try as = a^100 (use a computer or calculator)
octave-3.0.5:33> \# as = a^100
octave-3.0.5:33> as = a^100
as =
$\begin{array}{ll}0.40000 & 0.40000 \\ 0.60000 & 0.60000\end{array}$
octave-3.0.5:34> \# now check if the power is high enough
octave-3.0.5:34> a^101
ans =
$0.40000 \quad 0.40000$
$0.60000 \quad 0.60000$
octave-3.0.5:35> \# no change => stable matrix
octave-3.0.5:35> as
as =

0.40000	0.40000
0.60000	0.60000

octave-3.0.5:36> xs = as(:,1) \# all rows of col 1
xs =
0.40000
0.60000
octave-3.0.5:37> nx = xs * n
nx =
800.00
1200.00
octave-3.0.5:38> \# the system stablizes with 800 cars in NYC and 1200 in LA for every month after stabilization.
octave-3.0.5:38> \# The only question left is how long does it take for the system to stablize.
octave-3.0.5:38> \#
octave-3.0.5:38> i=0, ai = a^i, xi=ai*x0, ni = xi * n
i $=0$
ai $=$
10
01
$x i=$
0.50000
0.50000
ni =

1000
1000
octave-3.0.5:39> i=1, ai = a^i, xi=ai*x0, ni = xi * n
i $=1$
ai $=$
$\begin{array}{ll}0.50000 & 0.33333 \\ 0.50000 & 0.66667\end{array}$
$x i=$
0.41667
0.58333
ni =
833.33
1166.67
octave-3.0.5:40> $i=2$, $a i=a^{\wedge} i, ~ x i=a i^{*} x 0, ~ n i=x i * n$
i $=2$
ai $=$
0.41667
0.38889
0.58333
0.61111
$x i=$
0.40278
0.59722
ni $=$
805.56
1194.44
octave-3.0.5:41> i=3, ai = a^i, xi=ai*x0, ni = xi * n
i = 3
ai =
$0.40278 \quad 0.39815$
0.597220 .60185
$x i=$
0.40046
0.59954
ni $=$
800.93
1199.07
octave-3.0.5:42> i=4, ai = a^i, xi=ai*x0, ni = xi * n
i = 4
ai =
0.40046
0.39969
0.59954
0.60031
xi $=$
0.40008
0.59992
ni $=$
800.15
1199.85
octave-3.0.5:43> \# observe the system is almost stable after only 4 months octave-3.0.5:43> i=5, ai = a^i, xi=ai*x0, ni = xi * n
i = 5
ai =
$0.40008 \quad 0.39995$
0.599920 .60005
xi =
0.40001
0.59999
ni $=$
800.03
1199.97
octave-3.0.5:44> i=6, ai = a^i, xi=ai*x0, ni = xi * n

```
i = 6
ai =
    0.40001 0.39999
    0.59999 0.60001
xi =
    0.40000
    0.60000
ni =
    800.00
    1200.00
octave-3.0.5:45> i=7, ai = a^i, xi=ai*x0, ni = xi * n
i = 7
ai =
    0.40000 0.40000
    0.60000 0.60000
xi =
    0.40000
    0.60000
    ni =
        800.00
        1200.00
    octave-3.0.5:46> diary
```

