Gaussian Elimination - two lines

 case 1

Gaussian Elimination - two lines

Gaussian Elimination - two lines

Gaussian Elimination - two lines

$$
\begin{align*}
& y=m_{1} x+b_{1} \tag{1}\\
& y=m_{2} x+b_{2} \tag{2}
\end{align*}
$$

Three cases:
(1) Case I: one solution

- $\mathbf{m}_{1} \neq \mathbf{m}_{\mathbf{2}}$, slopes different \Rightarrow cross at one point.
(2) Case II: no solution
- $\mathbf{m}_{1}=\mathbf{m}_{2}$, slopes same \Rightarrow parallel lines.
- $\mathbf{b}_{1} \neq \mathbf{b}_{2}$ y-intercepts not same \Rightarrow no common points.
(3) Case III: infinite number of solutions. Must find all of them.
- $\mathbf{m}_{1}=\boldsymbol{m}_{2}$, slopes same \Rightarrow parallel lines.
- $\mathbf{b}_{1}=\mathbf{b}_{2}$ y-intercepts are same \Rightarrow all points common to both lines.
- all points common to both lines are solutions.

Gauss- Jordan Elimination

$$
\begin{align*}
& 2 x+3 y=8 \tag{3}\\
& 6 x-2 y=2 \tag{4}
\end{align*}
$$

Gauss-Jordan Elimination

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
2 & 3 & 8 \\
6 & -2 & 2
\end{array}\right] \quad \begin{array}{l}
-- \\
\mathrm{R} 2->\frac{1}{2} \mathrm{R} 2
\end{array}} \\
& {\left[\begin{array}{rrr}
2 & 3 & 8 \\
3 & -1 & 1
\end{array}\right] \quad \begin{array}{l}
-- \\
R_{2} \rightarrow R_{2}+(-1) \cdot R_{1}
\end{array}} \\
& {\left[\begin{array}{rrr}
2 & 3 & 8 \\
1 & -4 & -7
\end{array}\right] \quad \begin{array}{l}
\mathbf{R}_{\mathbf{1}} \leftrightarrow \mathbf{R}_{\mathbf{2}} \\
--
\end{array}} \\
& {\left[\begin{array}{rrr}
\mathbf{1} & -4 & -7 \\
2 & 3 & 8
\end{array}\right] \quad \begin{array}{l}
-- \\
\mathbf{R}_{2} \rightarrow \mathbf{R}_{2}+(-2) \cdot \mathbf{R}_{1}
\end{array}}
\end{aligned}
$$

Gauss- Jordan Elimination

$$
\begin{align*}
& {\left[\begin{array}{rrr}
1 & -4 & -7 \\
0 & 11 & 22
\end{array}\right]}
\end{aligned} \begin{aligned}
& -- \\
& \mathbf{R}_{2} \rightarrow \frac{1}{11} \mathbf{R}_{2} \\
& {\left[\begin{array}{rrr}
1 & -4 & -7 \\
0 & 1 & 2
\end{array}\right]}
\end{aligned} \begin{aligned}
& \mathbf{R}_{1} \rightarrow R_{1}+(4) \cdot \mathbf{R}_{2} \\
& -- \tag{5}\\
& {\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right]}
\end{align*} \begin{array}{r}
\text { rref } \tag{6}\\
\\
\\
\\
\\
\\
\begin{array}{ll}
1 x+0 y=1 \\
0 x-1 y=2
\end{array}
\end{array}
$$

Gives the only solution $(x, y)=(1,2)$

Same Problem

$$
\begin{align*}
& 2 x+3 y=8 \tag{7}\\
& 6 x-2 y=2 \tag{8}
\end{align*}
$$

Gauss-Jordan Elimination

$$
\left.\begin{array}{l}
{\left[\begin{array}{rrr}
2 & 3 & 8 \\
6 & -2 & 2
\end{array}\right]}
\end{array} \begin{array}{l}
\mathbf{R}_{1} \rightarrow \frac{1}{2} \mathbf{R}_{1} \\
\mathbf{R}_{2} \rightarrow \frac{1}{2} \mathbf{R}_{2}
\end{array}\right] \begin{aligned}
& -- \\
& {\left[\begin{array}{rrr}
1 & 3 / 2 & 4 \\
3 & -1 & 1
\end{array}\right]} \\
& {\left[\begin{array}{rrr}
1 & 3 / 2 & 4 \\
0 & -11 / 2 & -11
\end{array}\right]}
\end{aligned} \begin{aligned}
& -- \\
& \mathbf{R}_{2} \rightarrow \frac{(-2)}{11} \mathbf{R}_{2}
\end{aligned}
$$

Same Problem

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
1 & 3 / 2 & 4 \\
0 & 1 & 2
\end{array}\right]}
\end{aligned} \begin{aligned}
& \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+(-3 / 2) \cdot \mathrm{R}_{2} \\
& {\left[\begin{array}{lrr}
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right]}
\end{aligned} \begin{aligned}
& \mathrm{x}=1 \\
& \mathrm{y}=2
\end{aligned}
$$

Any sequence of elementary row operations can be used to reach rref.

Gauss-Jordan Elimination

$$
\begin{align*}
& y=2 x+2 \tag{9}\\
& y=2 x+1 \tag{10}\\
& 2 x-y=-2 \tag{11}\\
& -2 x+y=1 \tag{12}
\end{align*}
$$

Gauss-Jordan Elimination

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
2 & -1 & -2 \\
-2 & 1 & 1
\end{array}\right]}
\end{aligned} \begin{aligned}
& -- \\
& \mathbf{R}_{2} \rightarrow \mathbf{R}_{2}+(\mathbf{1}) \cdot \mathbf{R}_{\mathbf{1}} \\
& {\left[\begin{array}{rrr}
2 & -\mathbf{1} & -2 \\
0 & 0 & -1
\end{array}\right]}
\end{aligned} \quad \begin{aligned}
& -- \\
& \rightarrow \text { no solution }
\end{aligned}
$$

Gauss-Jordan Elimination

$$
\begin{gather*}
y=2 x+1 \tag{13}\\
2 y=4 x+2 \tag{14}\\
2 x-y=-1 \tag{15}\\
4 x-2 y=-2 \tag{16}
\end{gather*}
$$

Gauss-Jordan Elimination

$$
\begin{array}{ll}
{\left[\begin{array}{rrr}
2 & -1 & -1 \\
4 & -2 & -2
\end{array}\right]} & -- \\
\mathbf{R}_{2} \rightarrow R_{2}+(-2) \cdot R_{1} \\
{\left[\begin{array}{rrr}
2 & -1 & -1 \\
0 & 0 & 0
\end{array}\right]} & -- \\
\\
{\left[\begin{array}{rrr}
1 & -1 / 2 & -1 / 2 \\
0 & 0 & 0
\end{array}\right]} & \operatorname{rref}
\end{array}
$$

Gauss- Jordan Elimination

Equivalent system:

$$
\begin{array}{r}
1 x-\frac{1}{2} y=-\frac{1}{2} \\
0 x+0 y=0 \tag{18}
\end{array}
$$

System with two equations in two unknowns reduced to one equation in two unknowns.
Gauss-Jordan \rightarrow solve for leading variables (\mathbf{x}) in terms of non-leading variables (\mathbf{y}).

$$
\begin{align*}
& x=-\frac{\mathbf{1}}{\mathbf{2}}+\frac{\mathbf{1}}{\mathbf{2}} \mathbf{y} \tag{19}\\
& \mathbf{y}=\quad \mathbf{y}, \quad \mathbf{y} \text { is any real number (since no restrictions on } \mathbf{y} \text {) } \tag{20}
\end{align*}
$$

Give a few solutions by picking a few y's and solving for x's giving points on both lines.

