Gaussian Elimination: three equations, three unknowns

Use the Gauss-Jordan Elimination method to solve systems of linear equations.
(1) Write corresponding augmented coefficient matrix
(2) reduce to reduced row echelon form (rref), using three elementary row operations
(3) from reduced matrix write the equivalent system of equations

- solve for leading variables in terms of non-leading variables (if any)
(0) set non-leading variables to any real number
(0) write solution to system in matrix form. This is not part of G-J but is required for exam 1

Gaussian Elimination: three equations,three unknowns

 equation of plane and graph

Equations of form $\mathbf{a x}+\mathbf{b y} \mathbf{+ c z}=\mathbf{d}$ graph as a plane in three dimensional space

Gaussian Elimination: three equations, three unknowns

 case I: one solution

$$
\begin{array}{r}
x+2 y+z=5 \\
2 x+y+2 z=7 \\
x+2 y+4 z=4 \tag{3}
\end{array}
$$

Gaussian Elimination: three equations, three unknowns

 case I: one solutionUse Matlab or free matlab clones.
Both Octave and FreeMat are similar to Matlab and are free downloads.

$$
\begin{array}{r}
x+2 y+z=5 \\
2 x+y+2 z=7 \\
x+2 y+4 z=4 \tag{6}
\end{array}
$$

Here Octave is used to reduce the system.

```
octave:22> #-------------system with one solution
octave:23> AB1 =[lllllll
AB1 =
\begin{tabular}{llll}
1 & 2 & 1 & 5 \\
2 & 1 & 2 & 7 \\
1 & 2 & 4 & 4
\end{tabular}
octave:25> rref(AB1)
ans =
    lllcc
\[
\begin{aligned}
& x=\frac{10}{3} \\
& y=1 \\
& z=-\frac{1}{3}
\end{aligned}
\]
```


Gaussian Elimination: three equations, three unknowns

 case II: no solutionsystem has no solution

$$
\begin{align*}
x+y+z & =3 \tag{7}\\
2 x+y+z & =4 \tag{8}\\
x+y+z & =10 \tag{9}
\end{align*}
$$

Gaussian Elimination: three equations, three unknowns

 case II: no solution$$
\begin{align*}
x+y+z & =3 \tag{10}\\
2 x+y+z & =4 \tag{11}\\
x+y+z & =10 \tag{12}
\end{align*}
$$

octave:27> \#--------------system with no solution-

$\mathrm{AB2}=$

1	1	1	3
2	1	1	4
1	1	1	10

octave:30>octave:31> $\operatorname{rref}(A B 2)$
ans $=$

Gaussian Elimination: three equations, three unknowns

 case III: infinite number of solutionsAll points on intersecting line are solutions.

$$
\begin{array}{r}
x+2 y+z=5 \\
2 x+y+2 z=7 \\
x+y+z=4 \tag{15}
\end{array}
$$

Gaussian Elimination: three equations, three unknowns

 case III: infinite number of solutions$$
\begin{array}{r}
x+2 y+z=5 \\
2 x+y+2 z=7 \\
x+y+z=4 \tag{18}
\end{array}
$$

octave:32>\#--------------system with infinite number of solutions-
octave:33> AB3 = [llllll $2112127 ; 1114]$
AB3 $=$

1	2	1	5
2	1	2	7
1	1	1	4

octave:35> $\operatorname{rref}(A B 3)$
ans =

$$
\begin{aligned}
& x+z=3 \\
& y=1
\end{aligned}
$$

x and y are leading variables or dependent variables z is a non-leading or independent variable

Gaussian Elimination: three equations, three unknowns

 case III: infinite number of solutions$$
\begin{array}{r}
x+2 y+z=5 \\
2 x+y+2 z=7 \\
x+y+z=4 \tag{21}
\end{array}
$$

Reduces to

$$
\begin{array}{r}
x+0 y+z=3 \\
0 x+y+0 z=1 \tag{23}
\end{array}
$$

Solve for leading variables in terms of non-leading variables:

$$
\begin{align*}
& \mathrm{x}=\mathbf{3}-\mathrm{z} \tag{24}\\
& \mathbf{y}=\mathbf{1} \tag{25}\\
& \mathrm{z}=\mathrm{z}, \text { where } \mathrm{z}=\text { any real number } \tag{26}
\end{align*}
$$

Gaussian Elimination: three equations, three unknowns

 case III: answer in matrix formHere is the solution in matrix form:

$$
\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{3} \\
\mathbf{1} \\
\mathbf{0}
\end{array}\right]+\mathrm{z}\left[\begin{array}{c}
-\mathbf{1} \\
\mathbf{0} \\
\mathbf{1}
\end{array}\right], \quad \mathrm{z} \text { is any real number }
$$

