Solving System of Two equations

$$
\begin{align*}
& y=x+1 \tag{1}\\
& y=-x+5 \tag{2}
\end{align*}
$$

Solving System of Two equations

$$
\begin{align*}
& y=x+1 \tag{1}\\
& y=-x+5 \tag{2}
\end{align*}
$$

are the same equations as:

$$
\begin{align*}
& x-y=-1 \tag{3}\\
& x+y=5 \tag{4}
\end{align*}
$$

Solving System of Two equations

 Graphical Method
Graphical Method

Solve by graphing equations and finding all common points.

Solving System of Two equations

 Substitution Method (1)
SubstitutionMethod

$$
\begin{align*}
& x-y=-1 \tag{5}\\
& x+y=5 \tag{6}
\end{align*}
$$

Substitution Method

- solve for \mathbf{x} in first equation

Solving System of Two equations

 Substitution Method (1)
SubstitutionMethod

$$
\begin{align*}
& x-y=-1 \tag{5}\\
& x+y=5 \tag{6}
\end{align*}
$$

Substitution Method

- solve for \mathbf{x} in first equation
- use to eliminate \mathbf{x} in second equation

Solving System of Two equations

 Substitution Method (1)
SubstitutionMethod

$$
\begin{align*}
& x-y=-1 \tag{5}\\
& x+y=5 \tag{6}
\end{align*}
$$

Substitution Method

- solve for \mathbf{x} in first equation
- use to eliminate \mathbf{x} in second equation
- solve for remaining variable

Solving System of Two equations Substitution Method (1)

SubstitutionMethod

$$
\begin{align*}
& x-y=-1 \tag{5}\\
& x+y=5 \tag{6}
\end{align*}
$$

Substitution Method

- solve for \mathbf{x} in first equation
- use to eliminate \mathbf{x} in second equation
- solve for remaining variable
- use found variable in any equation to find other variable.

Solving System of Two equations

 Substitution Method (2)$$
\begin{align*}
& x-y=-1 \tag{7}\\
& x+y=5 \tag{8}
\end{align*}
$$

Substitution Method:

Solving System of Two equations

 Substitution Method (2)$$
\begin{align*}
& x-y=-1 \tag{7}\\
& x+y=5 \tag{8}
\end{align*}
$$

Substitution Method: From first equation

$$
\begin{equation*}
x=y-1 \tag{9}
\end{equation*}
$$

Solving System of Two equations

 Substitution Method (2)$$
\begin{align*}
& x-y=-1 \tag{7}\\
& x+y=5 \tag{8}
\end{align*}
$$

Substitution Method: From first equation

$$
\begin{equation*}
x=y-1 \tag{9}
\end{equation*}
$$

substitute for \mathbf{x} in second equation gives:

$$
\begin{align*}
(y-1)+y & =5 \tag{10}\\
2 y & =6 \tag{11}\\
y & =3 \tag{12}
\end{align*}
$$

Solving System of Two equations

$$
\begin{align*}
& x-y=-1 \tag{7}\\
& x+y=5 \tag{8}
\end{align*}
$$

Substitution Method: From first equation

$$
\begin{equation*}
x=y-1 \tag{9}
\end{equation*}
$$

substitute for \mathbf{x} in second equation gives:

$$
\begin{array}{r}
(y-1)+y=5 \\
2 y=6 \\
y=3 \tag{12}
\end{array}
$$

Now back substitute to find \mathbf{x} :

$$
\begin{equation*}
x=y-1=3-1=2 \tag{13}
\end{equation*}
$$

Giving $(x, y)=(2,3)$ as the only solution.

Solving System of Two equations

Elimination Method
Elimination Method

$$
\begin{align*}
& x-y=-1 \tag{14}\\
& x+y=5 \text { Add to eliminate } y \tag{15}
\end{align*}
$$

$$
\begin{array}{r}
2 x+0=4 \\
x=2 \tag{17}
\end{array}
$$

Solving System of Two equations

Elimination Method

$$
\begin{align*}
& x-y=-1 \tag{14}\\
& x+y=5 \text { Add to eliminate } y \tag{15}
\end{align*}
$$

Back Substitute to get

$$
\begin{align*}
& 2-y=-1 \tag{19}\\
& y=3 \tag{20}\\
& \Rightarrow(x, y)=(2,3)
\end{align*}
$$

Gauss- Jordan Elimination new example

Gauss - Jordan Elimination

$$
\begin{align*}
& 2 x+3 y=8 \tag{22}\\
& 6 x-2 y=2 \tag{23}
\end{align*}
$$

Gauss-Jordan Elimination new example

Gauss - Jordan Elimination

$$
\begin{align*}
& 2 x+3 y=8 \tag{22}\\
& 6 x-2 y=2 \tag{23}
\end{align*}
$$

Use the first elementary row operation: interchange two rows
$2 x+3 y=8$
$\mathbf{R}_{\mathbf{1}} \leftrightarrow \mathbf{R}_{\mathbf{2}}$
$6 x-2 y=2$

Gauss-Jordan Elimination new example

Gauss - Jordan Elimination

$$
\begin{align*}
& 2 x+3 y=8 \tag{22}\\
& 6 x-2 y=2 \tag{23}
\end{align*}
$$

Use the first elementary row operation: interchange two rows

$$
2 x+3 y=8 \quad \mathbf{R}_{1} \leftrightarrow \mathbf{R}_{2}
$$

Gives Equivalent System:

$$
\begin{align*}
& 6 x-2 y=2 \tag{26}\\
& 2 x+3 y=8 \tag{27}
\end{align*}
$$

Gauss- Jordan Elimination

$$
\begin{align*}
& 6 x-2 y=2 \tag{28}\\
& 2 x+3 y=8 \tag{29}
\end{align*}
$$

Gauss-Jordan Elimination

$$
\begin{align*}
& 6 x-2 y=2 \tag{28}\\
& 2 x+3 y=8 \tag{29}
\end{align*}
$$

Use the second elementary row operation: Multiply a row by a number

$$
6 x-2 y=2 \quad R_{1} \rightarrow \frac{1}{2} R_{1}
$$

Gauss-Jordan Elimination

$$
\begin{align*}
& 6 x-2 y=2 \tag{28}\\
& 2 x+3 y=8 \tag{29}
\end{align*}
$$

Use the second elementary row operation: Multiply a row by a number

$$
6 x-2 y=2 \quad R_{1} \rightarrow \frac{1}{2} R_{1}
$$

Gives Equivalent System:

$$
\begin{array}{r}
3 x-y=1 \\
2 x+3 y=8 \tag{33}
\end{array}
$$

Gauss- Jordan Elimination

$$
\begin{array}{r}
3 x-y=1 \\
2 x+3 y=8
\end{array}
$$

Gauss-Jordan Elimination

$$
\begin{array}{r}
3 x-y=1 \\
2 x+3 y=8 \tag{35}
\end{array}
$$

Use the third elementary row operation: add to a row some multiple of another row

$$
\begin{align*}
3 x-y=1 & \mathbf{R}_{1} \rightarrow \mathbf{R}_{1}+() \cdot \mathbf{R}_{2} \tag{36}\\
2 x+3 y & =8 \tag{37}
\end{align*}
$$

Gauss-Jordan Elimination

$$
\begin{array}{r}
3 x-y=1 \\
2 x+3 y=8 \tag{35}
\end{array}
$$

Use the third elementary row operation: add to a row some multiple of another row

$$
\begin{array}{rlr}
3 x-y=1 & R_{1} \rightarrow R_{1}+() \cdot R_{2} \\
2 x+3 y=8 & \\
& \\
3 x-y=1 & R_{1} \rightarrow R_{1}+(-1) \cdot R_{2} \tag{39}\\
2 x+3 y=8 &
\end{array}
$$

Gauss-Jordan Elimination

$$
\begin{array}{r}
3 x-y=1 \\
2 x+3 y=8 \tag{35}
\end{array}
$$

Use the third elementary row operation: add to a row some multiple of another row

$$
\begin{align*}
3 x-y=1 & \mathbf{R}_{1} \rightarrow \mathbf{R}_{1}+() \cdot \mathbf{R}_{2} \tag{36}\\
2 x+3 y & =8 \tag{37}
\end{align*}
$$

$$
3 x-y=1 \quad R_{1} \rightarrow R_{1}+(-1) \cdot R_{2}
$$

$$
\begin{equation*}
2 x+3 y=8 \tag{39}
\end{equation*}
$$

Gives Equivalent System:

$$
\begin{align*}
x-4 y & =-7 \tag{40}\\
2 x+3 y & =8 \tag{41}
\end{align*}
$$

Gauss-Jordan Elimination

$$
\begin{align*}
x-4 y & =-7 \tag{42}\\
2 x+3 y & =8 \tag{43}
\end{align*}
$$

Gauss-Jordan Elimination

$$
\begin{align*}
x-4 y & =-7 \tag{42}\\
2 x+3 y & =8 \tag{43}
\end{align*}
$$

Use the third elementary row operation

$$
\begin{align*}
x-4 y & =-7 \tag{44}\\
2 x+3 y & =8 \tag{45}
\end{align*} \quad R_{2} \rightarrow R_{2}+(-2) \cdot R_{1}
$$

Gauss-Jordan Elimination

$$
\begin{align*}
x-4 y & =-7 \tag{42}\\
2 x+3 y & =8 \tag{43}
\end{align*}
$$

Use the third elementary row operation

$$
\begin{align*}
x-4 y & =-7 \tag{44}\\
2 x+3 y & =8 \tag{45}
\end{align*} \quad R_{2} \rightarrow R_{2}+(-2) \cdot R_{1}
$$

Gives Equivalent System:

$$
\begin{align*}
x-4 y & =-7 \tag{46}\\
0 x+11 y & =22 \tag{47}
\end{align*}
$$

Gauss-Jordan Elimination

$$
\begin{align*}
x-4 y & =-7 \tag{48}\\
0 x+11 y & =22 \tag{49}
\end{align*}
$$

System is in Triangular Form or Row-Echelon Form

Gauss-Jordan Elimination

$$
\begin{align*}
x-4 y & =-7 \tag{48}\\
0 x+11 y & =22 \tag{49}
\end{align*}
$$

System is in Triangular Form or Row-Echelon Form
At this point typically use one of two methods to continue:
(1) Gaussian Elimination

Gauss-Jordan Elimination

$$
\begin{align*}
x-4 y & =-7 \tag{48}\\
0 x+11 y & =22 \tag{49}
\end{align*}
$$

System is in Triangular Form or Row-Echelon Form
At this point typically use one of two methods to continue:
(1) Gaussian Elimination

- use last row to solve for y

Gauss-Jordan Elimination

$$
\begin{align*}
x-4 y & =-7 \tag{48}\\
0 x+11 y & =22 \tag{49}
\end{align*}
$$

System is in Triangular Form or Row-Echelon Form
At this point typically use one of two methods to continue:
(1) Gaussian Elimination

- use last row to solve for y
- back-substitute to solve for x

Gauss-Jordan Elimination

$$
\begin{align*}
x-4 y & =-7 \tag{48}\\
0 x+11 y & =22 \tag{49}
\end{align*}
$$

System is in Triangular Form or Row-Echelon Form
At this point typically use one of two methods to continue:
(1) Gaussian Elimination

- use last row to solve for y
- back-substitute to solve for x
(2) Gauss-Jordan Elimination

Gauss-Jordan Elimination

$$
\begin{align*}
x-4 y & =-7 \tag{48}\\
0 x+11 y & =22 \tag{49}
\end{align*}
$$

System is in Triangular Form or Row-Echelon Form
At this point typically use one of two methods to continue:
(1) Gaussian Elimination

- use last row to solve for y
- back-substitute to solve for x
(2) Gauss-Jordan Elimination
- continue to reduce to Reduced Row Echelon Form (rref)

Gauss-Jordan Elimination

$$
\begin{array}{r}
x-4 y=-7 \\
0 x+11 y=22 \tag{49}
\end{array}
$$

System is in Triangular Form or Row-Echelon Form
At this point typically use one of two methods to continue:
(1) Gaussian Elimination

- use last row to solve for y
- back-substitute to solve for x
(2) Gauss-Jordan Elimination
- continue to reduce to Reduced Row Echelon Form (rref)
- solve for leading variables in terms of non-leading variables.

Gauss-Jordan Elimination

Continue with Gauss-Jordan Elimination

$$
\begin{align*}
x-4 y & =-7 \tag{50}\\
0 x+11 y & =22 \tag{51}\\
\hline x-4 y & =-7 \tag{52}\\
0 x+y & =2 \tag{53}\\
\hline x-0 y & =1 \tag{54}\\
0 x+y & =2 \tag{55}
\end{align*} \quad R_{2} \rightarrow \frac{1}{11} R_{2}
$$

Gauss-Jordan Elimination

Continue with Gauss-Jordan Elimination

$$
\begin{align*}
x-4 y & =-7 \tag{50}\\
0 x+11 y & =22 \tag{51}\\
\hline x-4 y & =-7 \tag{52}\\
0 x+y & =2 \tag{53}\\
\hline x-0 y & =1 \tag{54}\\
0 x+y & =2 \tag{55}
\end{align*} \quad R_{2} \rightarrow \frac{1}{11} R_{2}
$$

Giving $(x, y)=(1,2)$

