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Solving System of Two equations
Graphical Method

Graphical Method

Solve by graphing equations and finding all common points.
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Solving System of Two equations
Substitution Method (1)

SubstitutionMethod

x− y = −1 (5)

x + y = 5 (6)

Substitution Method

solve for x in first equation

use to eliminate x in second equation

solve for remaining variable

use found variable in any equation to find other variable.
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Solving System of Two equations
Substitution Method (2)

x− y = −1 (7)

x + y = 5 (8)

Substitution Method:

From first equation

x = y − 1 (9)

substitute for x in second equation gives:

(y − 1) + y = 5 (10)

2y = 6 (11)

y = 3 (12)

Now back substitute to find x:

x = y − 1 = 3− 1 = 2 (13)

Giving (x, y) = (2, 3) as the only solution.



Solving System of Two equations
Substitution Method (2)

x− y = −1 (7)

x + y = 5 (8)

Substitution Method: From first equation

x = y − 1 (9)

substitute for x in second equation gives:

(y − 1) + y = 5 (10)

2y = 6 (11)

y = 3 (12)

Now back substitute to find x:

x = y − 1 = 3− 1 = 2 (13)

Giving (x, y) = (2, 3) as the only solution.



Solving System of Two equations
Substitution Method (2)

x− y = −1 (7)

x + y = 5 (8)

Substitution Method: From first equation

x = y − 1 (9)

substitute for x in second equation gives:

(y − 1) + y = 5 (10)

2y = 6 (11)

y = 3 (12)

Now back substitute to find x:

x = y − 1 = 3− 1 = 2 (13)

Giving (x, y) = (2, 3) as the only solution.



Solving System of Two equations
Substitution Method (2)

x− y = −1 (7)

x + y = 5 (8)

Substitution Method: From first equation

x = y − 1 (9)

substitute for x in second equation gives:

(y − 1) + y = 5 (10)

2y = 6 (11)

y = 3 (12)

Now back substitute to find x:

x = y − 1 = 3− 1 = 2 (13)

Giving (x, y) = (2, 3) as the only solution.



Solving System of Two equations
Elimination Method

Elimination Method

x− y = −1 (14)

x + y = 5 Add to eliminate y (15)

2x + 0 = 4 (16)

x = 2 (17)

Back Substitute to get (18)

2− y = −1 (19)

y = 3 (20)

⇒ (x, y) = (2, 3) (21)
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x− y = −1 (14)
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Gauss-Jordan Elimination
new example

Gauss− Jordan Elimination

2x + 3y = 8 (22)

6x− 2y = 2 (23)

Use the first elementary row operation: interchange two rows

2x + 3y = 8 R1 ↔ R2 (24)

6x− 2y = 2 (25)

Gives Equivalent System:

6x− 2y = 2 (26)

2x + 3y = 8 (27)
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Gauss-Jordan Elimination

x− 4y = −7 (48)

0x + 11y = 22 (49)

System is in Triangular Form or Row-Echelon Form

At this point typically use one of two methods to continue:

1 Gaussian Elimination

use last row to solve for y
back-substitute to solve for x

2 Gauss-Jordan Elimination

continue to reduce to Reduced Row Echelon Form (rref)
solve for leading variables in terms of non-leading variables.
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Gauss-Jordan Elimination

Continue with Gauss-Jordan Elimination

x− 4y = −7 (50)

0x + 11y = 22 R2 →
1

11
R2 (51)

x− 4y = −7 R1 → R1 + (4) · R2 (52)

0x + y = 2 (53)

x− 0y = 1 (54)

0x + y = 2 (55)

Giving (x, y) = (1, 2)
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