Matrices

- Matrix multiplication A•B is defined only if the number of columns of matrix \mathbf{A} is the same as the number of rows of matrix \mathbf{B}.
- $\mathbf{A}_{\mathbf{m \times p}} \cdot \mathbf{B}_{\mathbf{p \times n}}=\mathbf{C}_{\mathbf{m \times n}}, \mathbf{p}$ is the number of columns of \mathbf{A} and \mathbf{p} is the number of rows of \mathbf{B}.
- The resulting matrix \mathbf{C} has the same number of rows as \mathbf{A} and the same number of columns as B
- Matrix multiplication is defined in terms of multiplying a row matrix by a column matrix. Both matrices must have the same number of elements.

$$
\begin{align*}
\mathbf{A} & =\left[\begin{array}{ll}
1 & 2
\end{array}\right] \text { and }, \mathbf{B}=\left[\begin{array}{l}
3 \\
4
\end{array}\right] \tag{1}\\
\mathbf{A} \cdot \mathbf{B}=\left[\begin{array}{ll}
1 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
3 \\
4
\end{array}\right] & =[1 \cdot 3+2 \cdot 4]=[11] \tag{2}
\end{align*}
$$

Matrices

$$
C=A \cdot B=\left[\begin{array}{ll}
1 & 2 \tag{3}\\
3 & 4
\end{array}\right] \cdot\left[\begin{array}{ll}
4 & 3 \\
2 & 1
\end{array}\right]=\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right]=\left[\begin{array}{cc}
8 & 5 \\
20 & 13
\end{array}\right.
$$

$\mathbf{c}_{\mathbf{i j}}$ is the element in row \mathbf{i} and column \mathbf{j} of matrix $\mathbf{C}=\mathbf{A B}$
$\mathbf{c}_{\mathbf{i j}}$ is found by multiplying row \mathbf{i} of matrix \mathbf{A} by column \mathbf{j} of matrix \mathbf{B}
$\mathbf{c}_{\mathrm{ij}}=[$ ith row of $A] \cdot\left[\begin{array}{c}\text { jth } \\ \text { column } \\ \text { of } B\end{array}\right]$

$$
\begin{align*}
& c_{11}=\left[\begin{array}{ll}
1 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
4 \\
2
\end{array}\right]=8, c_{12}=\left[\begin{array}{ll}
1 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
3 \\
1
\end{array}\right]=5 \tag{4}\\
& c_{21}=\left[\begin{array}{ll}
3 & 4
\end{array}\right] \cdot\left[\begin{array}{l}
4 \\
2
\end{array}\right]=20, c_{22}=\left[\begin{array}{ll}
3 & 4
\end{array}\right] \cdot\left[\begin{array}{l}
3 \\
1
\end{array}\right]=13 \tag{5}
\end{align*}
$$

Matrices

Write the system of equations in matrix form.

$$
\begin{gather*}
x+2 y=5 \tag{6}\\
3 x+4 y=19 \tag{7}\\
{\left[\begin{array}{c}
x+2 y \\
3 x+4 y
\end{array}\right]_{2 \times 1}=\left[\begin{array}{c}
5 \\
11
\end{array}\right]_{2 \times 1}} \tag{8}\\
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]_{2 \times 2} \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]_{2 \times 1}=\left[\begin{array}{c}
5 \\
11
\end{array}\right]_{2 \times 1}} \tag{9}\\
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
5 \\
11
\end{array}\right]} \tag{12}\\
A \cdot X=B \tag{13}
\end{gather*}
$$

Matrices $\mathrm{AB} \neq \mathrm{BA}$

Three cases:

- $\mathbf{A B}$ is defined but $\mathbf{B A}$ is not defined.
- $\mathbf{A B}$ and $\mathbf{B A}$ are both defined but not the same
- AB does equal BA
- Summary: In general $\mathbf{A B} \neq \mathbf{B A}$ but in some cases it is true that $A B=B A$

