Solution to "Practice Test" Fall 2004

1. \(x \)

\[A = xy \]

Subject to

\[2x + y = 300 \]

Maximize Area

\[A = xy \]

Use constraint to eliminate one variable from \(A(x,y) = xy \)

\[y = 300 - 2x \]

\[A = x(300-2x) = 300x - 2x^2 \]

New Equivalent problem

\[\frac{\partial A}{\partial x} = 300 - 4x = 0 \]

\[x_c = \frac{300}{4} = 75 \text{ m} \]

Use 2nd derivative test to check if \(x_c \) gives max area

\[A'(x) = -4 \]

\[A''(75) = -4 \]

\[\text{Gives max area} \]

\[y = 300 - 2(75) = 150 \text{ m} \]

\[x = 75 \text{ m} \text{ and } y = 150 \text{ m} \text{ give largest swimming area} \]

\[\text{with } 300 \text{ m of rope} \]

Maximum Area

\[(75 \text{ m})(150 \text{ m}) = 11,250 \text{ m}^2 \]