Linear Functions

Graph of Line

Graph of line $y = mx + b$

$m = \text{slope}$

$b = \text{y-intercept}$
Linear Functions

x and y intercepts

Graph of line $y = mx + b$

y-int $(0, b)$

note $x = 0$ for y-intercept

x-int $(-\frac{b}{m}, 0)$

note $y = 0$ for x-intercept
Slope

\[m = \frac{\text{rise}}{\text{run}} \]

\[y = 2x + 1 \]

\[\Delta y = y_2 - y_1 = 7 - 3 = 4 \]

\[\Delta x = x_2 - x_1 = 3 - 1 = 2 \]

\[m = \text{slope} = \frac{\Delta y}{\Delta x} = \frac{4}{2} = 2 \]
What is a slope?

definition

Definition

\[
\text{slope} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}
\]

Lines with large slopes change fast as \(x \) changes.

Lines with small slopes change slowly as \(x \) changes.

Lines with positive slopes increase as you go left to right.

Lines with negative slopes decrease as you go left to right.

Horizontal lines have slope = 0.

Vertical lines have slope undefined.
What is a slope?

definition

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>slope = (\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1})</td>
</tr>
</tbody>
</table>

- slope = \(\frac{\Delta y}{\Delta x} \) is also called the **Rate of Change in** \(y \) *w.r.t* \(x \)
What is a slope?

definition

Definition

\[
slope = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}
\]

- slope \(\frac{\Delta y}{\Delta x} \) is also called the Rate of Change in \(y \) w.r.t \(x \)
- Lines with \textbf{large slopes change fast} as \(x \) changes.
What is a slope?

Definition

\[
\text{slope} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}
\]

- slope \(\frac{\Delta y}{\Delta x}\) is also called the **Rate of Change** in y w.r.t x
- Lines with **large slopes** change fast as x changes.
- Lines with **small slopes** change slowly as x changes.
What is a slope?

definition

Definition

\[
\text{slope} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}
\]

- \(\text{slope} = \frac{\Delta y}{\Delta x} \) is also called the **Rate of Change** in \(y \) *w.r.t* \(x \)
- Lines with **large slopes** change **fast** as \(x \) changes.
- Lines with **small slopes** change **slowly** as \(x \) changes.
- Lines with **positive slopes** increase as go left to right.
What is a slope?

definition

Definition

\[
\text{slope} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}
\]

- slope \(\frac{\Delta y}{\Delta x} \) is also called the Rate of Change in \(y \) w.r.t \(x \)
- Lines with large slopes change fast as \(x \) changes.
- Lines with small slopes change slowly as \(x \) changes.
- Lines with positive slopes increase as go left to right
- Lines with negative slopes decrease as go left to right.
What is a slope?

definition

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>slope = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}</td>
</tr>
</tbody>
</table>

- slope = \frac{\Delta y}{\Delta x} is also called the **Rate of Change** in y w.r.t x
- Lines with **large slopes change fast** as x changes.
- Lines with **small slopes change slowly** as x changes.
- Lines with **positive slopes increase** as go left to right
- Lines with **negative slopes decrease** as go left to right.
- Horizontal lines have slope = 0.
What is a slope?

Definition

\[
\text{slope} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}
\]

- \(\text{slope} = \frac{\Delta y}{\Delta x}\) is also called the **Rate of Change in y w.r.t. x**
- Lines with **large slopes** change fast as \(x\) changes.
- Lines with **small slopes** change slowly as \(x\) changes.
- Lines with **positive slopes** increase as go left to right
- Lines with **negative slopes** decrease as go left to right.
- Horizontal lines have \(\text{slope} = 0\).
- Vertical lines have slope undefined.
Slopes of Lines
increase and decrease

- Lines with **positive slopes increase** as go left to right
- Lines with **negative slopes decrease** as go left to right.
Slopes of Lines

- Lines with **positive slopes increase** as go left to right
- Lines with **negative slopes decrease** as go left to right.
Slopes of Lines

Horizontal lines

- Horizontal lines have slope $= 0$.
Slopes of Lines

Horizontal lines have slope \(= 0 \).

\[
\text{slope} = \frac{\Delta y}{\Delta x} = \frac{0}{\Delta x \neq 0} = 0.
\]
Slopes of Lines

horozontal lines

- Horizontal lines have slope \(\text{slope} = 0 \).
- \[\text{slope} = \frac{\Delta y}{\Delta x} = \frac{0}{\Delta x \neq 0} = 0. \]
Slopes of Lines

horizontal lines

- Horizontal lines have slope = 0.
- \(\text{slope} = \frac{\Delta y}{\Delta x} = \frac{0}{\Delta x \neq 0} = 0. \)
Slopes of Lines

vertical lines

- Vertical lines have slope undefined.
Slopes of Lines

Vertical lines

- Vertical lines have slope undefined.
Vertical lines have slope undefined.

\[\text{slope} = \frac{\Delta y}{\Delta x} = \frac{\Delta y \neq 0}{0} \text{ is undefined.} \]
Slopes of Lines

Vertical lines

- Vertical lines have slope undefined.
- \(\text{slope} = \frac{\Delta y}{\Delta x} = \frac{\Delta y}{0} \neq 0 \) is undefined.
Slopes of Lines

Vertical lines

- Vertical lines have slope undefined.
- \(\text{slope} = \frac{\Delta y}{\Delta x} = \frac{\Delta y}{0} \neq 0 \) is undefined.

\[(x_1, y_1) \quad (3, 1) \]

\[(x_2, y_2) \quad \text{Vertical Line: } x = 3 \]

\[\text{slope} = \frac{y_2-y_1}{x_2-x_1} = \frac{4-1}{3-3} = \frac{3}{0} = \text{undefined} \]
Tangent Lines
from algebra to calculus

\[y = f(x) = x^2 \]

Tangent Line at \((-1,1)\)
has slope \(m = -2\)

Tangent Line at \((1,1)\)
has slope \(m = +2\)

Tangent Line at \((0,0)\)
has slope \(m = 0\)
Equations of lines

Point-Slope Equation

Point-Slope Equation of Line, \(y - y_0 = m(x - x_0) \)
Equations of lines

Point-Slope Equation

Point-Slope Equation of Line, \(y - y_0 = m(x - x_0) \)

- \(\text{slope} = m = \frac{y_2 - y_1}{x_2 - x_1} \Rightarrow \text{need two points} \)
Equations of lines
Point-Slope Equation

Point-Slope Equation of Line, \(y - y_0 = m(x - x_0) \)

- slope = \(m = \frac{y_2-y_1}{x_2-x_1} \) \(\Rightarrow \) need two points
- \(P_2 = (x_2, y_2) \) and \(P_1 = (x_1, y_1) \)
Equations of lines
Point-Slope Equation

Point-Slope Equation of Line, \(y - y_0 = m(x - x_0) \)

- \(\text{slope} = m = \frac{y_2-y_1}{x_2-x_1} \Rightarrow \text{need two points} \)
- \(P_2 = (x_2, y_2) \) and \(P_1 = (x_1, y_1) \)
- if \(P_2 = (x, y) \) an arbitrary point
Equations of lines

Point-Slope Equation

Point-Slope Equation of Line, $y - y_0 = m(x - x_0)$

- slope = $m = \frac{y_2 - y_1}{x_2 - x_1}$ ⇒ need two points
- $P_2 = (x_2, y_2)$ and $P_1 = (x_1, y_1)$
- if $P_2 = (x, y)$ an arbitrary point
- use $P_1 = (x_0, y_0)$ one point on line
Equations of lines
Point-Slope Equation

Point-Slope Equation of Line, \(y - y_0 = m(x - x_0) \)

- slope = \(m = \frac{y_2 - y_1}{x_2 - x_1} \) \(\Rightarrow \) need two points
- \(P_2 = (x_2, y_2) \) and \(P_1 = (x_1, y_1) \)
- if \(P_2 = (x, y) \) an arbitrary point
- use \(P_1 = (x_0, y_0) \) one point on line
- find \(m \) the slope of line
Equations of lines

Point-Slope Equation

Point-Slope Equation of Line, \(y - y_0 = m(x - x_0) \)

- slope = \(m = \frac{y_2 - y_1}{x_2 - x_1} \) ⇒ need two points
- \(P_2 = (x_2, y_2) \) and \(P_1 = (x_1, y_1) \)
- if \(P_2 = (x, y) \) an arbitrary point
- use \(P_1 = (x_0, y_0) \) one point on line
- find \(m \) the slope of line
- \(m = \frac{y - y_0}{x - x_0} \) giving
Equations of lines

Point-Slope Equation

Point-Slope Equation of Line, \[y - y_0 = m(x - x_0) \]

- slope = \(m = \frac{y_2-y_1}{x_2-x_1} \) \(\Rightarrow \) need two points
- \(P_2 = (x_2, y_2) \) and \(P_1 = (x_1, y_1) \)
- if \(P_2 = (x, y) \) an arbitrary point
- use \(P_1 = (x_0, y_0) \) one point on line
- find \(m \) the slope of line
- \(m = \frac{y-y_0}{x-x_0} \) giving
- \(y - y_0 = m(x - x_0) \)
Equations of lines

Point-Slope Equation

Slope-Intercept Equation for Line, \(y = mx + b \)
Equations of lines

Point-Slope Equation

\textbf{Slope-Intercept Equation for Line, } \quad y = mx + b

- \text{ slope } = \text{ m } = \frac{y_2 - y_1}{x_2 - x_1}
Equations of lines

Point-Slope Equation

Slope-Intercept Equation for Line, \(y = mx + b \)

- slope = \(m = \frac{y_2 - y_1}{x_2 - x_1} \)
- \(P_2 = (x_2, y_2) \) and \(P_1 = (x_1, y_1) \)
Equations of lines

Point-Slope Equation

Slope-Intercept Equation for Line, \(y = mx + b \)

- Slope = \(m = \frac{y_2 - y_1}{x_2 - x_1} \)
- \(P_2 = (x_2, y_2) \) and \(P_1 = (x_1, y_1) \)
- if \(P_2 = (x, y) \) an arbitrary point
Equations of lines

Point-Slope Equation

Slope-Intercept Equation for Line, \(y = mx + b \)

- slope = \(m = \frac{y_2 - y_1}{x_2 - x_1} \)
- \(P_2 = (x_2, y_2) \) and \(P_1 = (x_1, y_1) \)
- if \(P_2 = (x, y) \) an arbitrary point
- use \(P_1 = (0, b) \) y-intercept
Equations of lines

Point-Slope Equation

Slope-Intercept Equation for Line, \(y = mx + b \)

- \(\text{slope} = m = \frac{y_2 - y_1}{x_2 - x_1} \)
- \(P_2 = (x_2, y_2) \) and \(P_1 = (x_1, y_1) \)
- if \(P_2 = (x, y) \) an arbitrary point
- use \(P_1 = (0, b) \) y-intercept
- \(m \) is the slope
Equations of lines
Point-Slope Equation

Slope-Intercept Equation for Line, \(y = mx + b \)

- slope = \(m = \frac{y_2-y_1}{x_2-x_1} \)
- \(P_2 = (x_2, y_2) \) and \(P_1 = (x_1, y_1) \)
- if \(P_2 = (x, y) \) an arbitrary point
- use \(P_1 = (0, b) \) y-intercept
- \(m \) is the slope
- \(m = \frac{y-b}{x-0} \) giving
Slope-Intercept Equation for Line, \(y = mx + b \)

- **slope** = \(m = \frac{y_2 - y_1}{x_2 - x_1} \)
- \(P_2 = (x_2, y_2) \) and \(P_1 = (x_1, y_1) \)
- if \(P_2 = (x, y) \) an arbitrary point
- use \(P_1 = (0, b) \) y-intercept
- \(m \) is the slope
- \(m = \frac{y-b}{x-0} \) giving
- \(y = mx + b \)
1. Find equation of line with points \(P1 = (1, 1) \) and \(P2 = (3, 5) \)

\[m = \frac{5-1}{3-1} = \frac{4}{2} = 2 \]

Use \(m \) and \(P1 \) with point-slope equation

\[y - 1 = 2(x - 1) = 2x - 2 \]

Final expression in slope-intercept form
Find equation of line with points $P_1 = (1, 1)$ and $P_2 = (3, 5)$

- $m = \frac{5-1}{3-1} = \frac{4}{2} = 2$
- use m and P_1 with point-slope equation
Find equation of line with points $P_1 = (1, 1)$ and $P_2 = (3, 5)$

- $m = \frac{5-1}{3-1} = \frac{4}{2} = 2$
- use m and P_1 with point-slope equation
- $y - 1 = 2(x - 1) = 2x - 2$
1. Find equation of line with points $P_1 = (1, 1)$ and $P_2 = (3, 5)$
 - $m = \frac{5-1}{3-1} = \frac{4}{2} = 2$
 - Use m and P_1 with point-slope equation
 - $y - 1 = 2(x - 1) = 2x - 2$
 - $y = 2x - 1$
1 Find equation of line with points $P_1 = (1, 1)$ and $P_2 = (3, 5)$
- $m = \frac{5-1}{3-1} = \frac{4}{2} = 2$
- use m and P_1 with point-slope equation
- $y - 1 = 2(x - 1) = 2x - 2$
- $y = 2x - 1$
- final expression in slope-intercept form