Given:

- **cost per unit**: \(c = \$6 \) per unit, cost to producer
- **Demand Relation**: \(q = 100 - 2p \),
 - sometimes written \(D(p) = 100 - 2p \). Note, as the price per unit increases, the demand decreases.
- **production level**: \(q \),
 - assume that the number of units sold is the same as the number of units produced.
- **price per unit**: \(p \), selling price
Given:

- cost per unit: \(c = \$6 \) per unit, cost to producer
- Demand Relation: \(q = 100 - 2p \), sometimes written \(D(p) = 100 - 2p \). Note, as the price per unit increases, the demand decreases.
- production level: \(q \), assume that the number of units sold is the same as the number of units produced.
- price per unit: \(p \), selling price
Marginal Analysis

example

Given:

- cost per unit: \(c = $6 \) per unit, cost to producer
- Demand Relation: \(q = 100 - 2p \),
 - sometimes written \(D(p) = 100 - 2p \). Note, as the price per unit increases, the demand decreases.
- production level: \(q \),
 - assume that the number of units sold is the same as the number of units produced.
- price per unit: \(p \), selling price
Given:

- cost per unit: \(c = $6 \) per unit, cost to producer
- Demand Relation: \(q = 100 - 2p \),
 - sometimes written \(D(p) = 100 - 2p \). Note, as the price per unit increases, the demand decreases.
- production level: \(q \),
 - assume that the number of units sold is the same as the number of units produced.
- price per unit: \(p \), selling price
Marginal Analysis
example

Given:

- cost per unit: \(c = $6 \) per unit, cost to producer
- Demand Relation: \(q = 100 - 2p \),
 - sometimes written \(D(p) = 100 - 2p \). Note, as the price per unit increases, the demand decreases.
- production level: \(q \),
 - assume that the number of units sold is the same as the number of units produced.
- price per unit: \(p \), selling price
Given:

- cost per unit: $c = 6$ per unit, cost to producer
- Demand Relation: $q = 100 - 2p$,
 - sometimes written $D(p) = 100 - 2p$. Note, as the price per unit increases, the demand decreases.
- production level: q,
 - assume that the number of units sold is the same as the number of units produced.
- price per unit: p, selling price
Find:

- \(C(q) \), Cost function
- \(R(q) \), Revenue function
- \(P(q) \), Profit function
- \(q_{\text{max}} \) production level to maximize profit
- \(p_{\text{max}} \) the price to charge for each unit to maximize profit
- maximum profit \(P_{\text{max}} \)
- \(C_{\text{avg}} = \frac{C(q)}{q} \) Average Cost function
- break even point(s), set \(P(q) = 0 \) and solve for \(q \)
Find:

- $C(q)$, Cost function
- $R(q)$, Revenue function
- $P(q)$, Profit function
- q_{max} production level to maximize profit
- p_{max} the price to charge for each unit to maximize profit
- maximum profit P_{max}
- $C_{avg} = \frac{C(q)}{q}$ Average Cost function
- break even point(s), set $P(q) = 0$ and solve for q
Find:

- **C(q)**, Cost function
- **R(q)**, Revenue function
- **P(q)**, Profit function

- **q_{\text{max}}** production level to maximize profit
- **p_{\text{max}}** the price to charge for each unit to maximize profit
- maximum profit **P_{\text{max}}**
- **C_{\text{avg}} = \frac{C(q)}{q}** Average Cost function
- break even point(s), set **P(q) = 0** and solve for **q**
Find:

- $C(q)$, Cost function
- $R(q)$, Revenue function
- $P(q)$, Profit function
- q_{max}, production level to maximize profit
- p_{max}, the price to charge for each unit to maximize profit
- maximum profit P_{max}
- $C_{\text{avg}} = \frac{C(q)}{q}$, Average Cost function
- break even point(s), set $P(q) = 0$ and solve for q
Find:

- $C(q)$, Cost function
- $R(q)$, Revenue function
- $P(q)$, Profit function
- q_{max}, production level to maximize profit
- p_{max}, the price to charge for each unit to maximize profit
- maximum profit P_{max}
- $C_{\text{avg}} = \frac{C(q)}{q}$, Average Cost function
- break even point(s), set $P(q) = 0$ and solve for q
Marginal Analysis
example part 1

Find:

- \(C(q) \), Cost function
- \(R(q) \), Revenue function
- \(P(q) \), Profit function
- \(q_{\text{max}} \) production level to maximize profit
- \(p_{\text{max}} \) the price to charge for each unit to maximize profit
- maximum profit \(P_{\text{max}} \)
- \(C_{\text{avg}} = \frac{C(q)}{q} \) Average Cost function
- break even point(s), set \(P(q) = 0 \) and solve for \(q \)
Find:
- $C(q)$, Cost function
- $R(q)$, Revenue function
- $P(q)$, Profit function
- q_{max}, production level to maximize profit
- p_{max}, the price to charge for each unit to maximize profit
- maximum profit P_{max}
- $C_{\text{avg}} = \frac{C(q)}{q}$, Average Cost function
- break even point(s), set $P(q) = 0$ and solve for q
Find:

- \(C(q) \), Cost function
- \(R(q) \), Revenue function
- \(P(q) \), Profit function
- \(q_{\text{max}} \) production level to maximize profit
- \(p_{\text{max}} \) the price to charge for each unit to maximize profit
- maximum profit \(P_{\text{max}} \)
- \(C_{\text{avg}} = \frac{C(q)}{q} \) Average Cost function
- break even point(s), set \(P(q) = 0 \) and solve for \(q \)
There are two standard ways to approach the problem of finding q_{max}

1st solve $\text{MR} = \text{MC}$ i.e. set $R'(q) = C'(q)$ and solve for q_{max}. Using this method you never need to actually find the profit function. Sometimes this is useful.

2nd solve $\text{MP} = 0$, i.e. set $P'(q) = 0$ and solve for q_{max}. Here you must first find the profit function and it's derivative.

This should be obvious from the graph:
There are two standard ways to approach the problem of finding q_{max}

1st solve $MR = MC$ i.e. set $R'(q) = C'(q)$ and solve for q_{max}. Using this method you never need to actually find the profit function. Sometimes this is useful.

2nd solve $MP = 0$, i.e. set $P'(q) = 0$ and solve for q_{max}. Here you must first find the profit function and it's derivative.

This should be obvious from the graph:
There are two standard ways to approach the problem of finding q_{max}

1st solve $MR = MC$ i.e. set $R'(q) = C'(q)$ and solve for q_{max}.
Using this method you never need to actually find the profit function. Sometimes this is useful.

2nd solve $MP = 0$, i.e. set $P'(q) = 0$ and solve for q_{max}. Here you must first find the profit function and it's derivative.

This should be obvious from the graph:
There are two standard ways to approach the problem of finding q_{max}

1st solve $\text{MR} = \text{MC}$ i.e. set $R'(q) = C'(q)$ and solve for q_{max}. Using this method you never need to actually find the profit function. Sometimes this is useful.

2nd solve $\text{MP} = 0$, i.e. set $P'(q) = 0$ and solve for q_{max}. Here you must first find the profit function and it's derivative.

This should be obvious from the graph:
There are two standard ways to approach the problem of finding q_{max}

1st solve $MR = MC$ i.e. set $R'(q) = C'(q)$ and solve for q_{max}. Using this method you never need to actually find the profit function. Sometimes this is useful.

2nd solve $MP = 0$, i.e. set $P'(q) = 0$ and solve for q_{max}. Here you must first find the profit function and it’s derivative.

This should be obvious from the graph:
There are two standard ways to approach the problem of finding q_{max}

1st solve $MR = MC$ i.e. set $R'(q) = C'(q)$ and solve for q_{max}. Using this method you never need to actually find the profit function. Sometimes this is useful.

2nd solve $MP = 0$, i.e. set $P'(q) = 0$ and solve for q_{max}. Here you must first find the profit function and it’s derivative.

This should be obvious from the graph:
There are two standard ways to approach the problem of finding q_{max}

1st solve $\text{MR} = \text{MC}$ i.e. set $R'(q) = C'(q)$ and solve for q_{max}. Using this method you never need to actually find the profit function. Sometimes this is useful.

2nd solve $\text{MP} = 0$, i.e. set $P'(q) = 0$ and solve for q_{max}. Here you must first find the profit function and it’s derivative.

This should be obvious from the graph:
There are two standard ways to approach the problem of finding q_{max}

1st solve $\text{MR} = \text{MC}$ i.e. set $R'(q) = C'(q)$ and solve for q_{max}. Using this method you never need to actually find the profit function. Sometimes this is useful.

2nd solve $\text{MP} = 0$, i.e. set $P'(q) = 0$ and solve for q_{max}. Here you must first find the profit function and it’s derivative.

This should be obvious from the graph:
There are two standard ways to approach the problem of finding q_{max}

1st solve $\text{MR} = \text{MC}$ i.e. set $R'(q) = C'(q)$ and solve for q_{max}. Using this method you never need to actually find the profit function. Sometimes this is useful.

2nd solve $\text{MP} = 0$, i.e. set $P'(q) = 0$ and solve for q_{max}. Here you must first find the profit function and it’s derivative.

This should be obvious from the graph:
Cost Function:

- \(\text{cost} = \text{fixed cost} + \text{variable cost} \)
- for this problem assume fixed cost is zero.
- variable cost = cost per unit times number of units
- \(C(q) = 6q \), Cost Function
Cost Function:

- cost = fixed cost + variable cost
- for this problem assume fixed cost is zero.
- variable cost = cost per unit times number of units
- \(C(q) = 6q \), Cost Function
Cost Function:

- cost = fixed cost + variable cost
- for this problem assume fixed cost is zero.
- variable cost = cost per unit times number of units
- \(C(q) = 6q \), Cost Function
Cost Function:

- $\text{cost} = \text{fixed cost} + \text{variable cost}$
- for this problem assume fixed cost is zero.
- variable cost = cost per unit times number of units
- $C(q) = 6q$, Cost Function
Marginal Analysis

Revenue Function

- Revenue = (income from each unit sold) • (number units sold)
- \(R(q, p) = p \cdot q \)
 - This is a function of both \(q \) and \(p \). Need Revenue as a function of \(q \) only.

- Use the demand relation to convert \(p \) to a function of \(q \),
- Demand Relation: \(q = 100 - 2p \)
- solve for \(p \) as a function of \(q \)

\[
q = 100 - 2p \\
2p = 100 - q \\
p = 50 - \frac{1}{2} \cdot q
\]

- This gives the demand relation in the form \(D(q) = 50 - \frac{1}{2} \cdot q \)

- \(R(q) = (50 - \frac{1}{2} q)q = 50q - \frac{1}{2} q^2 \), Revenue Function
Marginal Analysis
Revenue Function

• Revenue = (income from each unit sold) \cdot (number units sold)
• \[R(q, p) = p \cdot q \]
 - This is a function of both \(q \) and \(p \). Need Revenue as a function of \(q \) only.
• Use the demand relation to convert \(p \) to a function of \(q \),
• Demand Relation: \(q = 100 - 2p \)
• solve for \(p \) as a function of \(q \)

\[
q = 100 - 2p \quad (1)
\]
\[
2p = 100 - q \quad (2)
\]
\[
p = 50 - \frac{1}{2} \cdot q \quad (3)
\]

• This gives the demand relation in the form \(D(q) = 50 - \frac{1}{2} \cdot q \)
• \[R(q) = (50 - \frac{1}{2}q)q = 50q - \frac{1}{2}q^2 \], Revenue Function
Marginal Analysis
Revenue Function

- Revenue = (income from each unit sold) \cdot (number units sold)
- \[R(q, p) = p \cdot q \]
 - This is a function of both \(q \) and \(p \). Need Revenue as a function of \(q \) only.
- Use the demand relation to convert \(p \) to a function of \(q \),
- Demand Relation: \(q = 100 - 2p \)
- solve for \(p \) as a function of \(q \)

\[
q = 100 - 2p \tag{1}
\]
\[
2p = 100 - q \tag{2}
\]
\[
p = 50 - \frac{1}{2} \cdot q \tag{3}
\]
- This gives the demand relation in the form \(D(q) = 50 - \frac{1}{2} \cdot q \)
- \[R(q) = (50 - \frac{1}{2}q)q = 50q - \frac{1}{2}q^2 \], Revenue Function
Marginal Analysis
Revenue Function

- Revenue = (income from each unit sold) \times (number units sold)
- \(R(q, p) = p \cdot q \),
 - This is a function of both \(q \) and \(p \). Need Revenue as a function of \(q \) only.

- Use the demand relation to convert \(p \) to a function of \(q \),
- Demand Relation: \(q = 100 - 2p \)
- solve for \(p \) as a function of \(q \\

\[
q = 100 - 2p \\
2p = 100 - q \\
p = 50 - \frac{1}{2} \cdot q
\]

- This gives the demand relation in the form \(D(q) = 50 - \frac{1}{2} \cdot q \)

- \(R(q) = (50 - \frac{1}{2}q)q = 50q - \frac{1}{2}q^2 \), Revenue Function
Revenue = (income from each unit sold) \cdot (number units sold)

\[R(q, p) = p \cdot q \]

This is a function of both \(q \) and \(p \). Need Revenue as a function of \(q \) only.

Use the demand relation to convert \(p \) to a function of \(q \),

Demand Relation: \(q = 100 - 2p \)

solve for \(p \) as a function of \(q \)

\[q = 100 - 2p \] \hspace{1cm} (1)
\[2p = 100 - q \] \hspace{1cm} (2)
\[p = 50 - \frac{1}{2} \cdot q \] \hspace{1cm} (3)

This gives the demand relation in the form \(D(q) = 50 - \frac{1}{2} \cdot q \)

\[R(q) = (50 - \frac{1}{2}q)q = 50q - \frac{1}{2}q^2 \], Revenue Function
Revenue Function

- Revenue = (income from each unit sold) · (number units sold)
- \(R(q, p) = p \cdot q \),
 - This is a function of both \(q \) and \(p \). Need Revenue as a function of \(q \) only.

Use the demand relation to convert \(p \) to a function of \(q \),

Demand Relation: \(q = 100 - 2p \)

- solve for \(p \) as a function of \(q \)

\[
\begin{align*}
q &= 100 - 2p \quad (1) \\
2p &= 100 - q \quad (2) \\
p &= 50 - \frac{1}{2} \cdot q \quad (3)
\end{align*}
\]

This gives the demand relation in the form \(D(q) = 50 - \frac{1}{2} \cdot q \)

\[
R(q) = (50 - \frac{1}{2} q)q = 50q - \frac{1}{2} q^2, \text{ Revenue Function}
\]
Revenue = (income from each unit sold)\cdot(number units sold)

\[R(q, p) = p \cdot q, \]

This is a function of both \(q \) and \(p \). Need Revenue as a function of \(q \) only.

Use the demand relation to convert \(p \) to a function of \(q \),

Demand Relation: \(q = 100 - 2p \)

solve for \(p \) as a function of \(q \)

\[
q = 100 - 2p \quad (1)
\]

\[
2p = 100 - q \quad (2)
\]

\[
p = 50 - \frac{1}{2} \cdot q \quad (3)
\]

This gives the demand relation in the form \(D(q) = 50 - \frac{1}{2} \cdot q \)

\[R(q) = (50 - \frac{1}{2}q)q = 50q - \frac{1}{2}q^2, \text{ Revenue Function} \]
Marginal Analysis
Revenue Function

- Revenue = (income from each unit sold) \cdot (number units sold)
- \(R(q, p) = p \cdot q \),
 - This is a function of both \(q \) and \(p \). Need Revenue as a function of \(q \) only.
- Use the demand relation to convert \(p \) to a function of \(q \),
- Demand Relation: \(q = 100 - 2p \)
- solve for \(p \) as a function of \(q \)

\[
q = 100 - 2p \\
2p = 100 - q \\
p = 50 - \frac{1}{2} \cdot q
\]

This gives the demand relation in the form \(D(q) = 50 - \frac{1}{2} \cdot q \)

\[
R(q) = (50 - \frac{1}{2}q)q = 50q - \frac{1}{2}q^2, \text{ Revenue Function}
\]
Revenue = (income from each unit sold) \cdot \text{(number units sold)}

\[R(q, p) = p \cdot q \]

This is a function of both \(q \) and \(p \). Need Revenue as a function of \(q \) only.

Use the demand relation to convert \(p \) to a function of \(q \),

Demand Relation: \(q = 100 - 2p \)

solve for \(p \) as a function of \(q \)

\[
q = 100 - 2p \quad (1)
\]

\[
2p = 100 - q \quad (2)
\]

\[
p = 50 - \frac{1}{2} \cdot q \quad (3)
\]

This gives the demand relation in the form \(D(q) = 50 - \frac{1}{2} \cdot q \)

\[R(q) = (50 - \frac{1}{2}q)q = 50q - \frac{1}{2}q^2, \text{ Revenue Function} \]
Revenue = (income from each unit sold) \cdot (number units sold)

\[R(q, p) = p \cdot q \]

This is a function of both \(q \) and \(p \). Need Revenue as a function of \(q \) only.

Use the demand relation to convert \(p \) to a function of \(q \),

Demand Relation: \(q = 100 - 2p \)

solve for \(p \) as a function of \(q \)

\[q = 100 - 2p \quad (1) \]
\[2p = 100 - q \quad (2) \]
\[p = 50 - \frac{1}{2} \cdot q \quad (3) \]

This gives the demand relation in the form \(D(q) = 50 - \frac{1}{2} \cdot q \)

\[R(q) = (50 - \frac{1}{2} q)q = 50q - \frac{1}{2} q^2, \text{ Revenue Function} \]
Profit:

- \(P(q) = R(q) - C(q) \)
- \(P(q) = (50q - \frac{1}{2}q^2) - (6q) \)
- \(P(q) = 44q - \frac{1}{2}q^2 \)

Profit Function: \(P(q) = 44q - \frac{1}{2}q^2 \)
Marginal Analysis
Profit Function

Profit:

- \(P(q) = R(q) - C(q) \)
- \(P(q) = (50q - \frac{1}{2}q^2) - (6q) \)
- \(P(q) = 44q - \frac{1}{2}q^2 \)

Profit Function: \(P(q) = 44q - \frac{1}{2}q^2 \)
Marginal Analysis
Profit Function

Profit:

- $P(q) = R(q) - C(q)$
- $P(q) = (50q - \frac{1}{2}q^2) - (6q)$
- $P(q) = 44q - \frac{1}{2}q^2$

Profit Function: $P(q) = 44q - \frac{1}{2}q^2$
Profit:

- \(P(q) = R(q) - C(q) \)
- \(P(q) = (50q - \frac{1}{2}q^2) - (6q) \)
- \(P(q) = 44q - \frac{1}{2}q^2 \)

Profit Function: \(P(q) = 44q - \frac{1}{2}q^2 \)
To find \(q_{\text{max}} \) set \(P' = 0 \) and solve for \(q \)

- \(P(q) = 44q - \frac{1}{2}q^2 \)
- solve \(MP = 0 \)
- solve \(P' = 44 - q = 0 \)
- gives \(q_{\text{max}} = 44 \) units. This is the quantity that must be made and sold to maximize profit.
- use the demand relation to find \(p_{\text{max}} \). (any form will do).
- \(p_{\text{max}} = 50 - \frac{1}{2} \cdot 44 = $28 \) per unit. This is what you should charge for each item to maximize the profit.
- Maximum profit
 \[P_{\text{max}} = P(q_{\text{max}}) = P(28) = 44(28) - \frac{1}{2}(28)^2 = $968.00 \]
To find q_{max} set $P' = 0$ and solve for q

- $P(q) = 44q - \frac{1}{2}q^2$
- solve $MP = 0$
- solve $P' = 44 - q = 0$
- gives $q_{\text{max}} = 44$ units. This is the quantity that must be made and sold to maximize profit.
- use the demand relation to find p_{max}. (any form will do).
- $p_{\text{max}} = 50 - \frac{1}{2} \cdot 44 = $28 per unit. This is what you should charge for each item to maximize the profit.
- Maximum profit
$P_{\text{max}} = P(q_{\text{max}}) = P(28) = 44(28) - \frac{1}{2}(28)^2 = $968.00
To find \(q_{\text{max}} \) set \(P' = 0 \) and solve for \(q \)

- \(P(q) = 44q - \frac{1}{2}q^2 \)
- solve \(MP = 0 \)
- solve \(P' = 44 - q = 0 \)
- gives \(q_{\text{max}} = 44 \) units. This is the quantity that must be made and sold to maximize profit.

- use the demand relation to find \(p_{\text{max}} \). (any form will do).
- \(p_{\text{max}} = 50 - \frac{1}{2} \cdot 44 = $28 \) per unit. This is what you should charge for each item to maximize the profit.

- Maximum profit
 \[
P_{\text{max}} = P(q_{\text{max}}) = P(28) = 44(28) - \frac{1}{2}(28)^2 = $968.00
 \]
To find q_{max} set $P' = 0$ and solve for q

- $P(q) = 44q - \frac{1}{2}q^2$
- solve $MP = 0$
- solve $P' = 44 - q = 0$

- gives $q_{\text{max}} = 44$ units. This is the quantity that must be made and sold to maximize profit.

- use the demand relation to find p_{max}. (any form will do).
- $p_{\text{max}} = 50 - \frac{1}{2} \cdot 44 = $28 per unit. This is what you should charge for each item to maximize the profit.

- Maximum profit

$P_{\text{max}} = P(q_{\text{max}}) = P(28) = 44(28) - \frac{1}{2}(28)^2 = $968.00
To find q_{max} set $P' = 0$ and solve for q

- $P(q) = 44q - \frac{1}{2}q^2$
- solve $MP = 0$
- solve $P' = 44 - q = 0$
- gives $q_{\text{max}} = 44$ units. This is the quantity that must be made and sold to maximize profit.

- use the demand relation to find p_{max}. (any form will do).
- $p_{\text{max}} = 50 - \frac{1}{2} \cdot 44 = \28 per unit. This is what you should charge for each item to maximize the profit.

- Maximum profit
 $P_{\text{max}} = P(q_{\text{max}}) = P(28) = 44(28) - \frac{1}{2}(28)^2 = \968.00
To find \(q_{\text{max}} \) set \(P' = 0 \) and solve for \(q \)

- \(P(q) = 44q - \frac{1}{2}q^2 \)
- solve \(MP = 0 \)
- solve \(P' = 44 - q = 0 \)
- gives \(q_{\text{max}} = 44 \) units. This is the quantity that must be made and sold to maximize profit.

- use the demand relation to find \(p_{\text{max}} \). (any form will do).
- \(p_{\text{max}} = 50 - \frac{1}{2} \cdot 44 = \$28 \) per unit. This is what you should charge for each item to maximize the profit.

- Maximum profit
 \[
 P_{\text{max}} = P(q_{\text{max}}) = P(28) = 44(28) - \frac{1}{2}(28)^2 = \$968.00
 \]
To find q_{max} set $P' = 0$ and solve for q

- $P(q) = 44q - \frac{1}{2}q^2$
- solve $MP = 0$
- solve $P' = 44 - q = 0$
- gives $q_{\text{max}} = 44$ units. This is the quantity that must be made and sold to maximize profit.

- use the demand relation to find p_{max}. (any form will do).
- $p_{\text{max}} = 50 - \frac{1}{2} \cdot 44 = \28 per unit. This is what you should charge for each item to maximize the profit.

Maximum profit

$P_{\text{max}} = P(q_{\text{max}}) = P(28) = 44(28) - \frac{1}{2}(28)^2 = \968.00
To find q_{max} set $P' = 0$ and solve for q

- $P(q) = 44q - \frac{1}{2}q^2$
- solve $MP = 0$
- solve $P' = 44 - q = 0$
- gives $q_{\text{max}} = 44$ units. This is the quantity that must be made and sold to maximize profit.

- use the demand relation to find p_{max}. (any form will do).
- $p_{\text{max}} = 50 - \frac{1}{2} \cdot 44 = $28 per unit. This is what you should charge for each item to maximize the profit.

Maximum profit

$P_{\text{max}} = P(q_{\text{max}}) = P(28) = 44(28) - \frac{1}{2}(28)^2 = $968.00
To find q_{max} set $P' = 0$ and solve for q

- $P(q) = 44q - \frac{1}{2}q^2$
- solve $MP = 0$
- solve $P' = 44 - q = 0$
- gives $q_{\text{max}} = 44$ units. This is the quantity that must be made and sold to maximize profit.

- use the demand relation to find p_{max}. (any form will do).
- $p_{\text{max}} = 50 - \frac{1}{2} \cdot 44 = $28 per unit. This is what you should charge for each item to maximize the profit.

- Maximum profit
 \[P_{\text{max}} = P(q_{\text{max}}) = P(28) = 44(28) - \frac{1}{2}(28)^2 = $968.00 \]
To find q_{max} set $P' = 0$ and solve for q

- $P(q) = 44q - \frac{1}{2}q^2$
- solve $MP = 0$
- solve $P' = 44 - q = 0$
- gives $q_{\text{max}} = 44$ units. This is the quantity that must be made and sold to maximize profit.

- use the demand relation to find p_{max}. (any form will do).
- $p_{\text{max}} = 50 - \frac{1}{2} \cdot 44 = $28 per unit. This is what you should charge for each item to maximize the profit.

- **Maximum profit**

 $P_{\text{max}} = P(q_{\text{max}}) = P(28) = 44(28) - \frac{1}{2}(28)^2 = $968.00
To find \(q_{\text{max}} \) set \(P' = 0 \) and solve for \(q \)

- \(P(q) = 44q - \frac{1}{2}q^2 \)
- solve \(MP = 0 \)
- solve \(P' = 44 - q = 0 \)
- gives \(q_{\text{max}} = 44 \) units. This is the quantity that must be made and sold to maximize profit.

- use the demand relation to find \(p_{\text{max}} \). (any form will do).
- \(p_{\text{max}} = 50 - \frac{1}{2} \cdot 44 = \$28 \) per unit. This is what you should charge for each item to maximize the profit.

- Maximum profit
 \[
P_{\text{max}} = P(q_{\text{max}}) = P(28) = 44(28) - \frac{1}{2}(28)^2 = \$968.00
 \]
To find q_{max} set $P' = 0$ and solve for q

- $P(q) = 44q - \frac{1}{2}q^2$
- solve $MP = 0$
- solve $P' = 44 - q = 0$
- gives $q_{\text{max}} = 44$ units. This is the quantity that must be made and sold to maximize profit.

- use the demand relation to find p_{max}. (any form will do).

- $p_{\text{max}} = 50 - \frac{1}{2} \cdot 44 = $28 per unit. This is what you should charge for each item to maximize the profit.

- Maximum profit

 $P_{\text{max}} = P(q_{\text{max}}) = P(28) = 44(28) - \frac{1}{2}(28)^2 = $968.00
To find q_{max} set $P' = 0$ and solve for q

- $P(q) = 44q - \frac{1}{2}q^2$
- solve $MP = 0$
- solve $P' = 44 - q = 0$
- gives $q_{\text{max}} = 44$ units. This is the quantity that must be made and sold to maximize profit.
- use the demand relation to find p_{max}. (any form will do).
- $p_{\text{max}} = 50 - \frac{1}{2} \cdot 44 = $28 per unit. This is what you should charge for each item to maximize the profit.
- Maximum profit
 $P_{\text{max}} = P(q_{\text{max}}) = P(28) = 44(28) - \frac{1}{2}(28)^2 = $968.00
Alternate method to find q_{max}

- To find q_{max} set $MR = MC$, i.e. set $R'(q) = C'(q)$ and solve for q.
- $C(q) = 6q$
- $R(q) = 50q - \frac{1}{2}q^2$
- $MC = C'(q) = 6$
- $MR = R'(q) = 50 - q$
- solve $MR) = MC$
- solve $R'(q) = C'(q)$
- solve $50 - q = 6$
- gives $q_{\text{max}} = 44$
- $P_{\text{max}} = R(q_{\text{max}}) - C(q_{\text{max}}) = 50(44) - \frac{1}{2}(44)^2 = $968.00
- This was easier and there was no need to find the profit function $P(q)$.
Alternate method to find q_{max}

- To find q_{max} set $\text{MR} = \text{MC}$, i.e. set $R'(q) = C'(q)$ and solve for q
- $C(q) = 6q$
- $R(q) = 50q - \frac{1}{2}q^2$
- $\text{MC} = C'(q) = 6$
- $\text{MR} = R'(q) = 50 - q$
- solve $\text{MR} = \text{MC}$
- solve $R'(q) = C'(q)$
- solve $50 - q = 6$
- gives $q_{\text{max}} = 44$
- $P_{\text{max}} = R(q_{\text{max}}) - C(q_{\text{max}}) = 50(44) - \frac{1}{2}(44)^2 = 968.00$
- This was easier and there was no need to find the profit function $P(q)$.
Marginal Analysis
alternate method to find q_{max}

Alternate method to find q_{max}

- To find q_{max} set $MR = MC$, i.e. set $R'(q) = C'(q)$ and solve for q
- $C(q) = 6q$
- $R(q) = 50q - \frac{1}{2}q^2$
- $MC = C'(q) = 6$
- $MR = R'(q) = 50 - q$
- solve $MR) = MC$
- solve $R'(q) = C'(q)$
- solve $50 - q = 6$
- gives $q_{\text{max}} = 44$
- $P_{\text{max}} = R(q_{\text{max}}) - C(q_{\text{max}}) = 50(44) - \frac{1}{2}(44)^2 = 968.00$
- This was easier and there was no need to find the profit function $P(q)$.

Roy M. Lowman
Marginal Analysis-simple example
Alternate method to find q_{max}

- To find q_{max} set $MR = MC$, i.e. set $R'(q) = C'(q)$ and solve for q
 - $C(q) = 6q$
 - $R(q) = 50q - \frac{1}{2}q^2$
 - $MC = C'(q) = 6$
 - $MR = R'(q) = 50 - q$
- solve $MR = MC$
- solve $R'(q) = C'(q)$
- solve $50 - q = 6$
- gives $q_{max} = 44$
- $P_{max} = R(q_{max}) - C(q_{max}) = 50(44) - \frac{1}{2} (44)^2 = 968.00$
- This was easier and there was no need to find the profit function $P(q)$.
Alternate method to find q_{max}

- To find q_{max} set $MR = MC$, i.e. set $R'(q) = C'(q)$ and solve for q
- $C(q) = 6q$
- $R(q) = 50q - \frac{1}{2}q^2$
- $MC = C'(q) = 6$
- $MR = R'(q) = 50 - q$
- solve $MR) = MC$
- solve $R'(q) = C'(q)$
- solve $50 - q = 6$
- gives $q_{\text{max}} = 44$
- $P_{\text{max}} = R(q_{\text{max}}) - C(q_{\text{max}}) = 50(44) - \frac{1}{2}(44)^2 = $968.00
- This was easier and there was no need to find the profit function $P(q)$.
Alternate method to find q_{max}

- To find q_{max} set $\text{MR} = \text{MC}$, i.e. set $R'(q) = C'(q)$ and solve for q
- $C(q) = 6q$
- $R(q) = 50q - \frac{1}{2}q^2$
- $\text{MC} = C'(q) = 6$
- $\text{MR} = R'(q) = 50 - q$
- solve $\text{MR} = \text{MC}$
- solve $R'(q) = C'(q)$
- solve $50 - q = 6$
- gives $q_{\text{max}} = 44$
- $P_{\text{max}} = R(q_{\text{max}}) - C(q_{\text{max}}) = 50(44) - \frac{1}{2}(44)^2 = $968.00
- This was easier and there was no need to find the profit function $P(q)$.

Marginal Analysis
alternate method to find q_{max}
Alternate method to find q_{max}

- To find q_{max} set $MR = MC$, i.e. set $R'(q) = C'(q)$ and solve for q
- $C(q) = 6q$
- $R(q) = 50q - \frac{1}{2}q^2$
- $MC = C'(q) = 6$
- $MR = R'(q) = 50 - q$
- solve $MR) = MC$
- solve $R'(q) = C'(q)$
- solve $50 - q = 6$
- gives $q_{\text{max}} = 44$
- $P_{\text{max}} = R(q_{\text{max}}) - C(q_{\text{max}}) = 50(44) - \frac{1}{2}(44)^2 = \968.00
- This was easier and there was no need to find the profit function $P(q)$.

Roy M. Lowman
Marginal Analysis-simple example
Alternate method to find q_{max}

- To find q_{max} set $\text{MR} = \text{MC}$, i.e. set $R'(q) = C'(q)$ and solve for q
- $C(q) = 6q$
- $R(q) = 50q - \frac{1}{2}q^2$
- $\text{MC} = C'(q) = 6$
- $\text{MR} = R'(q) = 50 - q$
- solve $\text{MR} = \text{MC}$
- solve $R'(q) = C'(q)$
- solve $50 - q = 6$
- gives $q_{\text{max}} = 44$
- $P_{\text{max}} = R(q_{\text{max}}) - C(q_{\text{max}}) = 50(44) - \frac{1}{2}(44)^2 = 968.00$
- This was easier and there was no need to find the profit function $P(q)$.
Alternate method to find q_{max}

To find q_{max} set $MR = MC$, i.e. set $R'(q) = C'(q)$ and solve for q.

- $C(q) = 6q$
- $R(q) = 50q - \frac{1}{2}q^2$
- $MC = C'(q) = 6$
- $MR = R'(q) = 50 - q$

solve $MR = MC$

solve $R'(q) = C'(q)$

solve $50 - q = 6$

gives $q_{\text{max}} = 44$

$P_{\text{max}} = R(q_{\text{max}}) - C(q_{\text{max}}) = 50(44) - \frac{1}{2}(44)^2 = $968.00

This was easier and there was no need to find the profit function $P(q)$.

Roy M. Lowman
Marginal Analysis-simple example
Alternate method to find q_{max}

To find q_{max} set $MR = MC$, i.e. set $R'(q) = C'(q)$ and solve for q

- $C(q) = 6q$
- $R(q) = 50q - \frac{1}{2}q^2$
- $MC = C'(q) = 6$
- $MR = R'(q) = 50 - q$
- Solve $MR) = MC$
- Solve $R'(q) = C'(q)$
- Solve $50 - q = 6$
- Gives $q_{\text{max}} = 44$
- $P_{\text{max}} = R(q_{\text{max}}) - C(q_{\text{max}}) = 50(44) - \frac{1}{2}(44)^2 = $968.00
- This was easier and there was no need to find the profit function $P(q)$.

Roy M. Lowman
Marginal Analysis-simple example
Alternate method to find q_{max}

- To find q_{max} set $MR = MC$, i.e. set $R'(q) = C'(q)$ and solve for q
- $C(q) = 6q$
- $R(q) = 50q - \frac{1}{2}q^2$
- $MC = C'(q) = 6$
- $MR = R'(q) = 50 - q$
- solve $MR) = MC$
- solve $R'(q) = C'(q)$
- solve $50 - q = 6$
- gives $q_{\text{max}} = 44$
- $P_{\text{max}} = R(q_{\text{max}}) - C(q_{\text{max}}) = 50(44) - \frac{1}{2}(44)^2 = 968.00$
- This was easier and there was no need to find the profit function $P(q)$.
Alternate method to find q_{max}

To find q_{max} set $\text{MR} = \text{MC}$, i.e. set $R'(q) = C'(q)$ and solve for q

- $C(q) = 6q$
- $R(q) = 50q - \frac{1}{2}q^2$
- $\text{MC} = C'(q) = 6$
- $\text{MR} = R'(q) = 50 - q$
- solve $\text{MR} = \text{MC}$
- solve $R'(q) = C'(q)$
- solve $50 - q = 6$
- gives $q_{\text{max}} = 44$

- $P_{\text{max}} = R(q_{\text{max}}) - C(q_{\text{max}}) = 50(44) - \frac{1}{2}(44)^2 = 968.00$
- This was easier and there was no need to find the profit function $P(q)$.
Alternate method to find q_{max}

To find q_{max} set $\text{MR} = \text{MC}$, i.e. set $R'(q) = C'(q)$ and solve for q.

- $C(q) = 6q$
- $R(q) = 50q - \frac{1}{2}q^2$
- $\text{MC} = C'(q) = 6$
- $\text{MR} = R'(q) = 50 - q$

Solve $R'(q) = C'(q)$

Solve $50 - q = 6$

Gives $q_{\text{max}} = 44$

$P_{\text{max}} = R(q_{\text{max}}) - C(q_{\text{max}}) = 50(44) - \frac{1}{2}(44)^2 = $968.00

This was easier and there was no need to find the profit function $P(q)$.

Roy M. Lowman Marginal Analysis-simple example
Alternate method to find q_{max}

- To find q_{max} set $MR = MC$, i.e. set $R'(q) = C'(q)$ and solve for q
- $C(q) = 6q$
- $R(q) = 50q - \frac{1}{2}q^2$
- $MC = C'(q) = 6$
- $MR = R'(q) = 50 - q$
- solve $MR = MC$
- solve $R'(q) = C'(q)$
- solve $50 - q = 6$
- gives $q_{\text{max}} = 44$
- $P_{\text{max}} = R(q_{\text{max}}) - C(q_{\text{max}}) = 50(44) - \frac{1}{2}(44)^2 = 968.00$
- This was easier and there was no need to find the profit function $P(q)$.

Roy M. Lowman
Marginal Analysis-simple example