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definition of e

The number e is defined as a limit. Here is one definition:

e= lim (1 +x)%

x—0+

A good way to evaluate this limit is make a table of numbers.
X 1 .01 0.001 0.0001 | 0.00001 | — O

(1+x)% 2.5037 | 2.70481 | 2.71692 | 2.71814 | 2.71826 | — e

Where e = 2.7 1828 1828 - - -
This limit will give the same result:

1 X
e= lim (1 + )
X—> 00 X
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Special Limits

e the natural base

» the number e is the natural base in calculus. Many
expressions in calculus are simpler in base e than in other
bases like base 2 or base 10

> e = 2.71828182845904509080 - - -
> e is a number between 2 and 3. A little closer to 3.

> e is easy to remember to 9 decimal places because 1828
repeats twice: e = 2.718281828. For this reason, do not use
2.7 to extimate e.

> use the €* button on your calculator to find e. Use 1 for x.

» example: F = Pe'" is often used for calculating compound
interest in business applications.
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Special Limits
ac = small, L. = BIG

Look at % using some numbers:
e 10 | 100 | 1000 | 10000 | 100000 | — 400
f(x) =1 .1].01| .001 ] .0001 | .00001 | — OF

-10 | -100 | -1000 | -10000 | -100000 | — —oo
-11]-.01 | -.001 | -.0001 | -.00001 | — —07*

f(x) =

DX | =

X .1 | .01 | .001 | .0001 | .00001 | — 40
f(x):% 10 | 100 | 1000 | 10000 | 100000 | — 400

-1 ]-01|-.001 | -.0001 | -.00001 | — —0
—

-10 | -100 | -1000 | -10000 | -100000 —o0

f(x) =

DX | =
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Special Limits

x — Foo for Polynomials

» when taking limits of polynomials to foo drop the lower
degree terms and only keep the higest degree term of of the
polymomial.

» this is an intermediate step in taking the limit. Use algebra to
simplify the expression at this step then continue to work on
finding the limit to infinity.

» this works because for large values of x the highest power
term of the polynomial is so much larger that all of the
smaller degree terms that the smaller degree terms have no
effect in the limit to infinity.
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