Marginal Analysis-simple example Math165: Business Calculus

Roy M. Lowman

Spring 2010, Week4 Lec3

- cost per unit: c = \$6 per unit, cost to producer
- Demand Relation: q = 100 2p,
 - sometimes written D(p) = 100 2p. Note, as the price per unit increases, the demand decreases.
- production level: q,
 - assume that the number of units sold is the same as the number of units produced.
- price per unit: p, selling price

→ 3 → < 3</p>

- cost per unit: c = \$6 per unit, cost to producer
- Demand Relation: q = 100 2p,
 - sometimes written D(p) = 100 2p. Note, as the price per unit increases, the demand decreases.
- production level: q,
 - assume that the number of units sold is the same as the number of units produced.
- price per unit: p, selling price

→ Ξ →

- cost per unit: c = \$6 per unit, cost to producer
- Demand Relation: q = 100 2p,
 - sometimes written D(p) = 100 − 2p. Note, as the price per unit increases, the demand decreases.
- production level: q,
 - assume that the number of units sold is the same as the number of units produced.
- price per unit: p, selling price

- cost per unit: c = \$6 per unit, cost to producer
- Demand Relation: $\mathbf{q} = \mathbf{100} \mathbf{2p}$,
 - sometimes written D(p) = 100 − 2p. Note, as the price per unit increases, the demand decreases.
- production level: q,
 - assume that the number of units sold is the same as the number of units produced.
- price per unit: p, selling price

- cost per unit: c = \$6 per unit, cost to producer
- Demand Relation: $\mathbf{q} = \mathbf{100} \mathbf{2p}$,
 - sometimes written D(p) = 100 2p. Note, as the price per unit increases, the demand decreases.
- production level: q,
 - assume that the number of units sold is the same as the number of units produced.
- price per unit: p, selling price

- cost per unit: c = \$6 per unit, cost to producer
- Demand Relation: $\mathbf{q} = \mathbf{100} \mathbf{2p}$,
 - sometimes written D(p) = 100 − 2p. Note, as the price per unit increases, the demand decreases.
- production level: q,
 - assume that the number of units sold is the same as the number of units produced.
- price per unit: p, selling price

Find:

• C(q), Cost function

- **R(q)**, Revenue function
- **P(q)**, Profit function
- q_{max} production level to maximize profit
- \mathbf{p}_{max} the price to charge for each unit to maximize profit
- maximum profit **P**_{max}
- $C_{avg} = \frac{C(q)}{q}$ Average Cost function
- break even point(s), set P(q) = 0 and solve for q

- C(q), Cost function
- **R(q)**, Revenue function
- **P(q)**, Profit function
- q_{max} production level to maximize profit
- \mathbf{p}_{max} the price to charge for each unit to maximize profit
- maximum profit **P**_{max}
- $C_{avg} = \frac{C(q)}{q}$ Average Cost function
- break even point(s), set P(q) = 0 and solve for q

- C(q), Cost function
- **R(q)**, Revenue function
- **P(q)**, Profit function
- **q**max production level to maximize profit
- \mathbf{p}_{max} the price to charge for each unit to maximize profit
- maximum profit **P**_{max}
- $C_{avg} = \frac{C(q)}{q}$ Average Cost function
- break even point(s), set P(q) = 0 and solve for q

- C(q), Cost function
- R(q), Revenue function
- **P(q)**, Profit function
- q_{max} production level to maximize profit
- $\bullet~p_{max}$ the price to charge for each unit to maximize profit
- maximum profit P_{max}
- $C_{avg} = \frac{C(q)}{q}$ Average Cost function
- break even point(s), set P(q) = 0 and solve for q

- C(q), Cost function
- R(q), Revenue function
- **P(q)**, Profit function
- qmax production level to maximize profit
- $\bullet~p_{max}$ the price to charge for each unit to maximize profit
- maximum profit P_{max}
- $C_{avg} = \frac{C(q)}{q}$ Average Cost function
- break even point(s), set P(q) = 0 and solve for q

- C(q), Cost function
- R(q), Revenue function
- **P(q)**, Profit function
- q_{max} production level to maximize profit
- $\bullet~p_{max}$ the price to charge for each unit to maximize profit
- maximum profit P_{max}
- $C_{avg} = \frac{C(q)}{q}$ Average Cost function
- break even point(s), set P(q) = 0 and solve for q

- C(q), Cost function
- R(q), Revenue function
- **P(q)**, Profit function
- q_{max} production level to maximize profit
- $\bullet~p_{max}$ the price to charge for each unit to maximize profit
- maximum profit P_{max}
- $C_{avg} = \frac{C(q)}{q}$ Average Cost function
- break even point(s), set P(q) = 0 and solve for q

- C(q), Cost function
- R(q), Revenue function
- **P(q)**, Profit function
- q_{max} production level to maximize profit
- $\bullet~p_{max}$ the price to charge for each unit to maximize profit
- maximum profit P_{max}
- $C_{avg} = \frac{C(q)}{q}$ Average Cost function
- break even point(s), set P(q) = 0 and solve for q

- $\bullet\,$ There are two standard ways to approach the problem of finding q_{max}
 - 1st solve MR = MC i.e. set R'(q) = C'(q) and solve for q_{max} . Using this method you never need to actually find the profit function. Sometimes this is useful.

2nd solve MP = 0, i.e. set P'(q) = 0 and solve for q_{max} . Here you must first find the profit function and it's derivative.

• This should be obvious from the graph:

- $\bullet\,$ There are two standard ways to approach the problem of finding q_{max}
 - 1st solve MR = MC i.e. set R'(q) = C'(q) and solve for q_{max} . Using this method you never need to actually find the profit function. Sometimes this is useful.
 - 2nd solve MP = 0, i.e. set P'(q) = 0 and solve for q_{max} . Here you must first find the profit function and it's derivative.
- This should be obvious from the graph:

 $\bullet\,$ There are two standard ways to approach the problem of finding q_{max}

1st solve MR = MC i.e. set R'(q) = C'(q) and solve for q_{max} . Using this method you never need to actually find the profit function. Sometimes this is useful.

2nd solve MP = 0, i.e. set P'(q) = 0 and solve for q_{max} . Here you must first find the profit function and it's derivative.

• This should be obvious from the graph:

- There are two standard ways to approach the problem of finding $\boldsymbol{q}_{\text{max}}$
 - 1st solve MR = MC i.e. set R'(q) = C'(q) and solve for q_{max} . Using this method you never need to actually find the profit function. Sometimes this is useful.
 - 2nd solve MP = 0, i.e. set P'(q) = 0 and solve for q_{max}. Here you must first find the profit function and it's derivative.
- This should be obvious from the graph:

- There are two standard ways to approach the problem of finding $\boldsymbol{q}_{\text{max}}$
 - 1st solve MR = MC i.e. set R'(q) = C'(q) and solve for q_{max} . Using this method you never need to actually find the profit function. Sometimes this is useful.
 - 2nd solve MP = 0, i.e. set P'(q) = 0 and solve for q_{max} . Here you must first find the profit function and it's derivative.
- This should be obvious from the graph:

イロト イポト イヨト イヨト

- There are two standard ways to approach the problem of finding $\boldsymbol{q}_{\text{max}}$
 - 1st solve MR = MC i.e. set R'(q) = C'(q) and solve for q_{max} . Using this method you never need to actually find the profit function. Sometimes this is useful.
 - 2nd solve MP = 0, i.e. set P'(q) = 0 and solve for q_{max} . Here you must first find the profit function and it's derivative.
- This should be obvious from the graph:

• □ > • □ > • □ > • □ > •

- There are two standard ways to approach the problem of finding $\boldsymbol{q}_{\text{max}}$
 - 1st solve MR = MC i.e. set R'(q) = C'(q) and solve for q_{max} . Using this method you never need to actually find the profit function. Sometimes this is useful.
 - 2nd solve MP = 0, i.e. set P'(q) = 0 and solve for q_{max} . Here you must first find the profit function and it's derivative.
- This should be obvious from the graph:

• □ > • □ > • □ > • □ > •

- There are two standard ways to approach the problem of finding $\boldsymbol{q}_{\text{max}}$
 - 1st solve MR = MC i.e. set R'(q) = C'(q) and solve for q_{max} . Using this method you never need to actually find the profit function. Sometimes this is useful.
 - 2nd solve MP = 0, i.e. set P'(q) = 0 and solve for q_{max} . Here you must first find the profit function and it's derivative.
- This should be obvious from the graph:

• □ > • □ > • □ > • □ > •

- There are two standard ways to approach the problem of finding $\boldsymbol{q}_{\text{max}}$
 - 1st solve MR = MC i.e. set R'(q) = C'(q) and solve for q_{max} . Using this method you never need to actually find the profit function. Sometimes this is useful.
 - 2nd solve MP = 0, i.e. set P'(q) = 0 and solve for q_{max} . Here you must first find the profit function and it's derivative.
- This should be obvious from the graph:

A 1

- cost = fixed cost + variable cost
- for this problem assume fixed cost is zero.
- variable cost = cost per unit times number of units

•
$$C(q) = 6q$$
, Cost Function

- cost = fixed cost + variable cost
- for this problem assume fixed cost is zero.
- variable cost = cost per unit times number of units

• C(q) = 6q, Cost Function

- cost = fixed cost + variable cost
- for this problem assume fixed cost is zero.
- variable cost = cost per unit times number of units

• C(q) = 6q, Cost Function

- cost = fixed cost + variable cost
- for this problem assume fixed cost is zero.
- variable cost = cost per unit times number of units
- C(q) = 6q, Cost Function

Revenue = (income from each unit sold) (number units sold)
R(q, p) = p · q ,

• This is a function of both **q** and **p**. Need Revenue as a function of **q** only.

- Use the demand relation to convert **p** to a function of **q**,
- Demand Relation: q = 100 2p

• solve for **p** as a function of **q**

$$2\mathbf{p} = \mathbf{100} - \mathbf{q} \tag{2}$$

$$\mathbf{p} = \mathbf{50} - \frac{1}{2} \cdot \mathbf{q} \tag{3}$$

This gives the demand relation in the form D(q) = 50 - ¹/₂ · q
R(q) = (50 - ¹/₂q)q = 50q - ¹/₂q², Revenue Function

- Revenue = (income from each unit sold) (number units sold)
 R(q, p) = p · q ,
 - This is a function of both **q** and **p**. Need Revenue as a function of **q** only.
- Use the demand relation to convert **p** to a function of **q**,
- Demand Relation: q = 100 2p

• solve for **p** as a function of **q**

$$q = 100 - 2p \tag{1}$$

$$2\mathbf{p} = \mathbf{100} - \mathbf{q} \tag{2}$$

$$\mathbf{p} = \mathbf{50} - \frac{1}{2} \cdot \mathbf{q} \tag{3}$$

This gives the demand relation in the form D(q) = 50 - ¹/₂ · q
R(q) = (50 - ¹/₂q)q = 50q - ¹/₂q², Revenue Function

- Revenue = (income from each unit sold) · (number units sold)
- $R(q,p) = p \cdot q$
 - This is a function of both **q** and **p**. Need Revenue as a function of **q** only.
- Use the demand relation to convert **p** to a function of **q**,
- Demand Relation: q = 100 2p

• solve for **p** as a function of **q**

$$q = 100 - 2p$$
 (1)
 $2p = 100 - q$ (2)

$$\mathbf{p} = \mathbf{50} - \frac{1}{2} \cdot \mathbf{q} \tag{3}$$

- Revenue = (income from each unit sold) (number units sold)
- $R(q,p) = p \cdot q$
 - This is a function of both **q** and **p**. Need Revenue as a function of **q** only.
- \bullet Use the demand relation to convert p to a function of q,
- Demand Relation: q = 100 2p

• solve for **p** as a function of **q**

$$q = 100 - 2p \tag{1}$$

$$2p = 100 - q$$
 (2)

$$\mathbf{p} = \mathbf{50} - \frac{1}{2} \cdot \mathbf{q} \tag{3}$$

- Revenue = (income from each unit sold) (number units sold)
- $R(q,p) = p \cdot q$
 - This is a function of both **q** and **p**. Need Revenue as a function of **q** only.
- $\bullet\,$ Use the demand relation to convert p to a function of q,
- Demand Relation: q = 100 2p

• solve for **p** as a function of **q**

$$q = 100 - 2p$$
 (1)
 $2p = 100 - q$ (2)
 $p = 50 - \frac{1}{2} \cdot q$ (3)

• Revenue = (income from each unit sold) (number units sold)

•
$$R(q,p) = p \cdot q$$

- This is a function of both **q** and **p**. Need Revenue as a function of **q** only.
- Use the demand relation to convert \mathbf{p} to a function of \mathbf{q} ,
- Demand Relation: q = 100 2p

 $\bullet\,$ solve for p as a function of q

$$q = 100 - 2p \tag{1}$$

$$2p = 100 - q$$
 (2)

$$\mathbf{p} = \mathbf{50} - \frac{1}{2} \cdot \mathbf{q} \tag{3}$$

This gives the demand relation in the form D(q) = 50 - ½ ⋅ q
R(q) = (50 - ½q)q = 50q - ½q², Revenue Function

- Revenue = (income from each unit sold) (number units sold)
- $R(q,p) = p \cdot q$
 - This is a function of both **q** and **p**. Need Revenue as a function of **q** only.
- $\bullet\,$ Use the demand relation to convert p to a function of q,
- Demand Relation: q = 100 2p

• solve for **p** as a function of **q**

$$q = 100 - 2p \tag{1}$$

$$2p = 100 - q$$
 (2)

$$\mathbf{p} = \mathbf{50} - \frac{\mathbf{1}}{\mathbf{2}} \cdot \mathbf{q} \tag{3}$$

- Revenue = (income from each unit sold) (number units sold)
- $R(q,p) = p \cdot q$
 - This is a function of both **q** and **p**. Need Revenue as a function of **q** only.
- Use the demand relation to convert \mathbf{p} to a function of \mathbf{q} ,
- Demand Relation: q = 100 2p

solve for p as a function of q

$q = 100 - 2p \tag{1}$	1)
------------------------	---	---

$$2\mathbf{p} = \mathbf{100} - \mathbf{q} \tag{2}$$

$$\mathbf{p} = \mathbf{50} - \frac{1}{2} \cdot \mathbf{q} \tag{3}$$

• Revenue = (income from each unit sold) • (number units sold)

•
$$R(q,p) = p \cdot q$$

- This is a function of both **q** and **p**. Need Revenue as a function of **q** only.
- Use the demand relation to convert \mathbf{p} to a function of \mathbf{q} ,
- Demand Relation: q = 100 2p

 $\bullet\,$ solve for p as a function of q

$$\mathbf{q} = \mathbf{100} - \mathbf{2p} \tag{1}$$

$$2\mathbf{p} = \mathbf{100} - \mathbf{q} \tag{2}$$

$$\mathbf{p} = \mathbf{50} - \frac{1}{2} \cdot \mathbf{q} \tag{3}$$

• This gives the demand relation in the form $D(q) = 50 - \frac{1}{2} \cdot q$

•
$$\mathbf{R}(\mathbf{q}) = (50 - \frac{1}{2}\mathbf{q})\mathbf{q} = 50\mathbf{q} - \frac{1}{2}\mathbf{q}^2$$
, Revenue Function

• Revenue = (income from each unit sold) • (number units sold)

•
$$R(q,p) = p \cdot q$$

- This is a function of both **q** and **p**. Need Revenue as a function of **q** only.
- Use the demand relation to convert \mathbf{p} to a function of \mathbf{q} ,
- Demand Relation: q = 100 2p

solve for p as a function of q

$$\mathbf{q} = \mathbf{100} - \mathbf{2p} \tag{1}$$

$$2\mathbf{p} = \mathbf{100} - \mathbf{q} \tag{2}$$

$$\mathbf{p} = \mathbf{50} - \frac{1}{2} \cdot \mathbf{q} \tag{3}$$

• P(q) = R(q) - C(q)

•
$$P(q) = (50q - \frac{1}{2}q^2) - (6q)$$

•
$$P(q) = 44q - \frac{1}{2}q^2$$

Profit Function:
$$P(q) = 44q - \frac{1}{2}q^2$$

æ

《曰》《聞》《臣》《臣》

•
$$P(q) = R(q) - C(q)$$

•
$$P(q) = (50q - \frac{1}{2}q^2) - (6q)$$

•
$$P(q) = 44q - \frac{1}{2}q^2$$

Profit Function:
$$P(q) = 44q - \frac{1}{2}q^2$$

æ

《曰》《聞》《臣》《臣》

•
$$P(q) = R(q) - C(q)$$

•
$$P(q) = (50q - \frac{1}{2}q^2) - (6q)$$

•
$$P(q) = 44q - \frac{1}{2}q^2$$

Profit Function:
$$P(q) = 44q - \frac{1}{2}q^2$$

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

•
$$P(q) = R(q) - C(q)$$

• $P(q) = (50q - \frac{1}{2}q^2) - (6q)$

•
$$P(q) = 44q - \frac{1}{2}q^2$$

• Profit Function:
$$P(q) = 44q - \frac{1}{2}q^2$$

æ

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

To find q_{max} set P' = 0 and solve for q

- $P(q) = 44q \frac{1}{2}q^2$
- solve MP = 0
- solve P' = 44 q = 0
- gives q_{max} = 44 units. This is the quantity that must be made and sold to maximize profit.
- use the demand relation to find **p**_{max}. (any form will do).
- $p_{max} = 50 \frac{1}{2} \cdot 44 = 28 per unit. This is what you should charge for each item to maximize the profit.
- Maximum profit

 $P_{max} = P(q_{max}) = P(28) = 44(28) - \frac{1}{2}(28)^2 =$ \$968.00

→ □ → → □ →

To find q_{max} set P' = 0 and solve for q

- $P(q) = 44q \frac{1}{2}q^2$
- solve MP = 0
- solve P' = 44 − q = 0
- gives q_{max} = 44 units. This is the quantity that must be made and sold to maximize profit.
- use the demand relation to find **p**_{max}. (any form will do).
- $p_{max} = 50 \frac{1}{2} \cdot 44 = 28 per unit. This is what you should charge for each item to maximize the profit.
- Maximum profit

 $P_{max} = P(q_{max}) = P(28) = 44(28) - \frac{1}{2}(28)^2 =$ \$968.00

To find q_{max} set $\mathsf{P}'=0$ and solve for q

- $P(q) = 44q \frac{1}{2}q^2$
- solve MP = 0
- solve **P' = 44 q = 0**
- gives q_{max} = 44 units. This is the quantity that must be made and sold to maximize profit.
- use the demand relation to find p_{max} . (any form will do).
- $p_{max} = 50 \frac{1}{2} \cdot 44 = 28 per unit. This is what you should charge for each item to maximize the profit.
- Maximum profit

 $P_{max} = P(q_{max}) = P(28) = 44(28) - \frac{1}{2}(28)^2 =$ \$968.00

To find q_{max} set $\mathsf{P}'=0$ and solve for q

- $P(q) = 44q \frac{1}{2}q^2$
- solve MP = 0
- solve P' = 44 q = 0
- gives q_{max} = 44 units. This is the quantity that must be made and sold to maximize profit.
- use the demand relation to find **p**_{max}. (any form will do).
- $p_{max} = 50 \frac{1}{2} \cdot 44 = 28 per unit. This is what you should charge for each item to maximize the profit.
- Maximum profit

 $P_{max} = P(q_{max}) = P(28) = 44(28) - \frac{1}{2}(28)^2 =$ \$968.00

To find q_{max} set $\mathsf{P}'=0$ and solve for q

- $P(q) = 44q \frac{1}{2}q^2$
- solve MP = 0
- solve P' = 44 q = 0
- gives q_{max} = 44 units. This is the quantity that must be made and sold to maximize profit.
- use the demand relation to find p_{max}. (any form will do).
- $p_{max} = 50 \frac{1}{2} \cdot 44 = 28 per unit. This is what you should charge for each item to maximize the profit.
- Maximum profit

 $P_{max} = P(q_{max}) = P(28) = 44(28) - \frac{1}{2}(28)^2 =$ \$968.00

To find q_{max} set $\mathsf{P}'=0$ and solve for q

- $P(q) = 44q \frac{1}{2}q^2$
- solve MP = 0
- solve P' = 44 q = 0
- gives q_{max} = 44 units. This is the quantity that must be made and sold to maximize profit.

• use the demand relation to find p_{max}. (any form will do).

- $p_{max} = 50 \frac{1}{2} \cdot 44 = 28 per unit. This is what you should charge for each item to maximize the profit.
- Maximum profit

 $P_{max} = P(q_{max}) = P(28) = 44(28) - \frac{1}{2}(28)^2 =$ \$968.00

To find q_{max} set $\mathsf{P}'=0$ and solve for q

- $P(q) = 44q \frac{1}{2}q^2$
- solve MP = 0
- solve P' = 44 q = 0
- gives q_{max} = 44 units. This is the quantity that must be made and sold to maximize profit.
- \bullet use the demand relation to find $p_{max}.$ (any form will do).
- $p_{max} = 50 \frac{1}{2} \cdot 44 = 28 per unit. This is what you should charge for each item to maximize the profit.
- Maximum profit

 $P_{max} = P(q_{max}) = P(28) = 44(28) - \frac{1}{2}(28)^2 =$ \$968.00

高 と く ヨ と く ヨ と

To find q_{max} set $\mathsf{P}'=0$ and solve for q

- $P(q) = 44q \frac{1}{2}q^2$
- solve MP = 0
- solve P' = 44 q = 0
- gives q_{max} = 44 units. This is the quantity that must be made and sold to maximize profit.
- use the demand relation to find \mathbf{p}_{max} . (any form will do).
- $p_{max} = 50 \frac{1}{2} \cdot 44 = 28 per unit. This is what you should charge for each item to maximize the profit.
- Maximum profit

 $P_{max} = P(q_{max}) = P(28) = 44(28) - \frac{1}{2}(28)^2 =$ \$968.00

伺 と く ヨ と く ヨ と

To find q_{max} set $\mathsf{P}'=0$ and solve for q

- $P(q) = 44q \frac{1}{2}q^2$
- solve MP = 0
- solve P' = 44 q = 0
- gives q_{max} = 44 units. This is the quantity that must be made and sold to maximize profit.
- use the demand relation to find \mathbf{p}_{max} . (any form will do).
- $p_{max} = 50 \frac{1}{2} \cdot 44 = 28 per unit. This is what you should charge for each item to maximize the profit.
- Maximum profit

 $P_{max} = P(q_{max}) = P(28) = 44(28) - \frac{1}{2}(28)^2 =$ \$968.00

伺 と く ヨ と く ヨ と

- $P(q) = 44q \frac{1}{2}q^2$
- solve MP = 0
- solve P' = 44 q = 0
- gives q_{max} = 44 units. This is the quantity that must be made and sold to maximize profit.
- \bullet use the demand relation to find $p_{max}.$ (any form will do).
- $p_{max} = 50 \frac{1}{2} \cdot 44 = 28 per unit. This is what you should charge for each item to maximize the profit.
- Maximum profit

 $P_{max} = P(q_{max}) = P(28) = 44(28) - \frac{1}{2}(28)^2 =$ \$968.00

高 と く ヨ と く ヨ と

- $P(q) = 44q \frac{1}{2}q^2$
- solve MP = 0
- solve P' = 44 q = 0
- gives q_{max} = 44 units. This is the quantity that must be made and sold to maximize profit.
- \bullet use the demand relation to find $p_{max}.$ (any form will do).
- $p_{max} = 50 \frac{1}{2} \cdot 44 = 28 per unit. This is what you should charge for each item to maximize the profit.
- Maximum profit

 $P_{max} = P(q_{max}) = P(28) = 44(28) - \frac{1}{2}(28)^2 =$ \$968.00

高 と く ヨ と く ヨ と

- $P(q) = 44q \frac{1}{2}q^2$
- solve MP = 0
- solve P' = 44 q = 0
- gives q_{max} = 44 units. This is the quantity that must be made and sold to maximize profit.
- use the demand relation to find \mathbf{p}_{max} . (any form will do).
- $p_{max} = 50 \frac{1}{2} \cdot 44 = 28 per unit. This is what you should charge for each item to maximize the profit.
- Maximum profit

 $P_{max} = P(q_{max}) = P(28) = 44(28) - \frac{1}{2}(28)^2 = \968.00

伺 と く ヨ と く ヨ と

- $P(q) = 44q \frac{1}{2}q^2$
- solve MP = 0
- solve P' = 44 q = 0
- gives q_{max} = 44 units. This is the quantity that must be made and sold to maximize profit.
- use the demand relation to find \mathbf{p}_{max} . (any form will do).
- $p_{max} = 50 \frac{1}{2} \cdot 44 = 28 per unit. This is what you should charge for each item to maximize the profit.
- Maximum profit

 $P_{max} = P(q_{max}) = P(28) = 44(28) - \frac{1}{2}(28)^2 = \968.00

伺 と く ヨ と く ヨ と

- To find q_{max} set MR = MC, i.e. set R'(q) = C'(q) and solve for q
- C(q) = 6q
- $R(q) = 50q \frac{1}{2}q^2$
- MC = C'(q) = 6
- MR = R'(q) = 50 q
- solve MR) = MC
- solve R'(q) = C'(q)
- solve 50 − q = 6
- gives q_{max} = 44
- $P_{max} = R(q_{max}) C(q_{max}) = 50(44) \frac{1}{2}(44)^2 =$ \$968.00
- This was easier and there was no need to find the profit function P(q).

- To find q_{max} set MR = MC, i.e. set R'(q) = C'(q) and solve for q
- C(q) = 6q
- $R(q) = 50q \frac{1}{2}q^2$
- MC = C'(q) = 6
- MR = R'(q) = 50 q
- solve MR) = MC
- solve R'(q) = C'(q)
- solve 50 − q = 6
- gives q_{max} = 44
- $P_{max} = R(q_{max}) C(q_{max}) = 50(44) \frac{1}{2}(44)^2 =$ \$968.00
- This was easier and there was no need to find the profit function P(q).

- To find q_{max} set MR = MC, i.e. set R'(q) = C'(q) and solve for q
- C(q) = 6q
- $R(q) = 50q \frac{1}{2}q^2$
- MC = C'(q) = 6
- MR = R'(q) = 50 q
- solve MR) = MC
- solve R'(q) = C'(q)
- solve 50 q = 6
- gives q_{max} = 44
- $P_{max} = R(q_{max}) C(q_{max}) = 50(44) \frac{1}{2}(44)^2 =$ \$968.00
- This was easier and there was no need to find the profit function P(q).

- To find q_{max} set MR = MC, i.e. set R'(q) = C'(q) and solve for q
- C(q) = 6q
- $R(q) = 50q \frac{1}{2}q^2$
- MC = C'(q) = 6
- MR = R'(q) = 50 q
- solve MR) = MC
- solve R'(q) = C'(q)
- solve 50 q = 6
- gives q_{max} = 44
- $P_{max} = R(q_{max}) C(q_{max}) = 50(44) \frac{1}{2}(44)^2 =$ \$968.00
- This was easier and there was no need to find the profit function P(q).

- To find q_{max} set MR = MC, i.e. set R'(q) = C'(q) and solve for q
- C(q) = 6q
- $R(q) = 50q \frac{1}{2}q^2$
- MC = C'(q) = 6
- MR = R'(q) = 50 q
- solve MR) = MC
- solve R'(q) = C'(q)
- o solve 50 − q = 6
- gives $q_{max} = 44$
- $P_{max} = R(q_{max}) C(q_{max}) = 50(44) \frac{1}{2}(44)^2 =$ \$968.00
- This was easier and there was no need to find the profit function **P(q)**.

- To find q_{max} set MR = MC, i.e. set R'(q) = C'(q) and solve for q
- C(q) = 6q
- $R(q) = 50q \frac{1}{2}q^2$
- MC = C'(q) = 6
- MR = R'(q) = 50 q
- solve MR) = MC
- solve R'(q) = C'(q)
- o solve 50 − q = 6
- gives $q_{max} = 44$
- $P_{max} = R(q_{max}) C(q_{max}) = 50(44) \frac{1}{2}(44)^2 =$ \$968.00
- This was easier and there was no need to find the profit function **P(q)**.

- To find q_{max} set MR = MC, i.e. set R'(q) = C'(q) and solve for q
- C(q) = 6q
- $R(q) = 50q \frac{1}{2}q^2$
- MC = C'(q) = 6
- MR = R'(q) = 50 q
- solve MR) = MC
- solve R'(q) = C'(q)
- o solve 50 − q = 6
- gives q_{max} = 44
- $P_{max} = R(q_{max}) C(q_{max}) = 50(44) \frac{1}{2}(44)^2 =$ \$968.00
- This was easier and there was no need to find the profit function **P(q)**.

- To find q_{max} set MR = MC, i.e. set R'(q) = C'(q) and solve for q
- C(q) = 6q
- $R(q) = 50q \frac{1}{2}q^2$
- MC = C'(q) = 6
- MR = R'(q) = 50 q
- solve MR) = MC
- solve R'(q) = C'(q)
- o solve 50 − q = 6
- gives $q_{max} = 44$
- $P_{max} = R(q_{max}) C(q_{max}) = 50(44) \frac{1}{2}(44)^2 =$ \$968.00
- This was easier and there was no need to find the profit function **P(q)**.

- To find q_{max} set MR = MC, i.e. set R'(q) = C'(q) and solve for q
- C(q) = 6q
- $R(q) = 50q \frac{1}{2}q^2$
- MC = C'(q) = 6
- MR = R'(q) = 50 q
- solve MR) = MC
- solve **R**'(**q**) = **C**'(**q**)
- o solve 50 − q = 6
- gives $q_{max} = 44$
- $P_{max} = R(q_{max}) C(q_{max}) = 50(44) \frac{1}{2}(44)^2 =$ \$968.00
- This was easier and there was no need to find the profit function **P(q)**.

- To find q_{max} set MR = MC, i.e. set R'(q) = C'(q) and solve for q
- C(q) = 6q
- $R(q) = 50q \frac{1}{2}q^2$
- MC = C'(q) = 6
- MR = R'(q) = 50 q
- solve MR) = MC
- solve R'(q) = C'(q)
- solve 50 q = 6
- gives $q_{max} = 44$
- $P_{max} = R(q_{max}) C(q_{max}) = 50(44) \frac{1}{2}(44)^2 =$ \$968.00
- This was easier and there was no need to find the profit function **P(q)**.

- To find q_{max} set MR = MC, i.e. set R'(q) = C'(q) and solve for q
- C(q) = 6q
- $R(q) = 50q \frac{1}{2}q^2$
- MC = C'(q) = 6
- MR = R'(q) = 50 q
- solve MR) = MC
- solve R'(q) = C'(q)
- solve 50 q = 6
- gives q_{max} = 44
- $P_{max} = R(q_{max}) C(q_{max}) = 50(44) \frac{1}{2}(44)^2 =$ \$968.00
- This was easier and there was no need to find the profit function **P(q)**.

- To find q_{max} set MR = MC, i.e. set R'(q) = C'(q) and solve for q
- C(q) = 6q
- $R(q) = 50q \frac{1}{2}q^2$
- MC = C'(q) = 6
- MR = R'(q) = 50 q
- solve MR) = MC
- solve R'(q) = C'(q)
- o solve 50 − q = 6
- gives q_{max} = 44
- $P_{max} = R(q_{max}) C(q_{max}) = 50(44) \frac{1}{2}(44)^2 =$ \$968.00
- This was easier and there was no need to find the profit function **P(q)**.

Alternate method to find q_{max}

- To find \mathbf{q}_{max} set $\mathbf{MR} = \mathbf{MC}$, i.e. set $\mathbf{R}'(\mathbf{q}) = \mathbf{C}'(\mathbf{q})$ and solve for **q**
- C(q) = 6q
- $R(q) = 50q \frac{1}{2}q^2$
- MC = C'(q) = 6
- MR = R'(q) = 50 q
- solve MR) = MC
- solve R'(q) = C'(q)
- solve 50 q = 6
- gives $q_{max} = 44$ $P_{max} = R(q_{max}) C(q_{max}) = 50(44) \frac{1}{2}(44)^{2} = 968.00
- This was easier and there was no need to find the profit

~6(44)

Alternate method to find q_{max}

- To find \mathbf{q}_{max} set $\mathbf{MR} = \mathbf{MC}$, i.e. set $\mathbf{R}'(\mathbf{q}) = \mathbf{C}'(\mathbf{q})$ and solve for **q**
- C(q) = 6q
- $R(q) = 50q \frac{1}{2}q^2$
- MC = C'(q) = 6
- MR = R'(q) = 50 q
- solve MR) = MC
- solve R'(q) = C'(q)
- solve 50 q = 6
- gives $q_{max} = 44$ $P_{max} = R(q_{max}) C(q_{max}) = 50(44) \frac{1}{2}(44)^{2}_{\Lambda} = \968.00
- This was easier and there was no need to find the profit function **P(q)**.