Marginal Analysis-simple example Math165: Business Calculus

Roy M. Lowman

Spring 2010, Week4 Lec3

Marginal Analysis

Given:

- cost per unit: $\mathbf{c}=\$ 6$ per unit, cost to producer
- Demand Relation: $q=100-2 p$,
- production level: q,
- price per unit: p, selling price

Marginal Analysis

Given:

- cost per unit: $\mathbf{c}=\mathbf{\$ 6}$ per unit, cost to producer
- Demand Relation: $\mathbf{q}=100-\mathbf{2 p}$,
- price per unit: \mathbf{p}, selling price

Marginal Analysis example

Given:

- cost per unit: $\mathbf{c}=\$ 6$ per unit, cost to producer
- Demand Relation: $\mathbf{q}=100-\mathbf{2 p}$,
- sometimes written $\mathbf{D}(\mathbf{p})=100-\mathbf{2 p}$. Note, as the price per unit increases, the demand decreases.
- production level: q,
- price per unit: \mathbf{p}, selling price

Marginal Analysis example

Given:

- cost per unit: $\mathbf{c}=\$ 6$ per unit, cost to producer
- Demand Relation: $\mathbf{q}=100-\mathbf{2 p}$,
- sometimes written $\mathbf{D}(\mathbf{p})=100-\mathbf{2 p}$. Note, as the price per unit increases, the demand decreases.
- production level: q,
- assume that the number of units sold is the same as the
number of units produced.
- price per unit: p, selling price

Marginal Analysis example

Given:

- cost per unit: $\mathbf{c}=\mathbf{\$ 6}$ per unit, cost to producer
- Demand Relation: $\mathbf{q}=100-\mathbf{2 p}$,
- sometimes written $\mathbf{D}(\mathbf{p})=100 \mathbf{- 2 p}$. Note, as the price per unit increases, the demand decreases.
- production level: \mathbf{q},
- assume that the number of units sold is the same as the number of units produced.
- price per unit: \mathbf{p}, selling price

Marginal Analysis example

Given:

- cost per unit: $\mathbf{c}=\$ 6$ per unit, cost to producer
- Demand Relation: $\mathbf{q}=100-\mathbf{2 p}$,
- sometimes written $\mathbf{D}(\mathbf{p})=100 \mathbf{- 2 p}$. Note, as the price per unit increases, the demand decreases.
- production level: \mathbf{q},
- assume that the number of units sold is the same as the number of units produced.
- price per unit: p, selling price

Marginal Analysis

 example part 1Find:

- $\mathbf{C}(\mathbf{q})$, Cost function
- $R(q)$, Revenue function
- $\mathbf{P (q)}$, Profit function
- $\mathbf{q}_{\text {max }}$ production level to maximize profit
- $\mathrm{P}_{\text {max }}$ the price to charge for each unit to maximize profit
- maximum profit $\mathbf{P}_{\text {max }}$
- $\mathrm{C}_{\text {avg }}=\frac{\mathrm{C}(\mathrm{q})}{\mathrm{q}}$ Average Cost function
- break even point(s), set $P(q)=0$ and solve for q

Marginal Analysis

 example part 1Find:

- $\mathbf{C}(\mathbf{q})$, Cost function
- $\mathbf{R}(\mathbf{q})$, Revenue function
- $P(q)$, Profit function
- $\mathbf{q}_{\text {max }}$ production level to maximize profit
- $\mathbf{p}_{\text {max }}$ the price to charge for each unit to maximize profit
- maximum profit $\mathrm{P}_{\max }$
- $\mathrm{C}_{\mathrm{avg}}=\frac{\mathrm{C}(\mathrm{q})}{\mathrm{q}}$ Average Cost function
- break even point(s), set $\mathbf{P}(\mathbf{q})=\mathbf{0}$ and solve for q

Marginal Analysis

 example part 1Find:

- $\mathbf{C}(\mathbf{q})$, Cost function
- $\mathbf{R (q)}$, Revenue function
- $P(q)$, Profit function
- $\mathrm{q}_{\max }$ production level to maximize profit
- $\mathbf{p}_{\max }$ the price to charge for each unit to maximize profit
- maximum profit $\mathbf{P}_{\text {max }}$
- $\mathrm{C}_{\mathrm{avg}}=\frac{\mathrm{C}(\mathrm{q})}{\mathrm{q}}$ Average Cost function
- break even point (s), set $\mathbf{P}(\mathbf{q})=\mathbf{0}$ and solve for \mathbf{q}

Marginal Analysis

 example part 1Find:

- $\mathbf{C}(\mathbf{q})$, Cost function
- $\mathbf{R (q)}$, Revenue function
- $\mathbf{P (q)}$, Profit function
- $\mathbf{q}_{\text {max }}$ production level to maximize profit
- Pmax the price to charge for each unit to maximize profit
- maximum profit $\mathbf{P}_{\max }$
- $\mathrm{C}_{\mathrm{avg}}=\frac{\mathrm{C}(\mathrm{q})}{\mathrm{q}}$ Average Cost function
- break even point(s), set $P(q)=0$ and solve for q

Marginal Analysis

 example part 1Find:

- C(q), Cost function
- $\mathbf{R (q)}$, Revenue function
- $\mathbf{P (q)}$, Profit function
- $\mathbf{q m a x}^{\text {max }}$ production level to maximize profit
- $\mathbf{p}_{\text {max }}$ the price to charge for each unit to maximize profit
- maximum profit $\mathrm{P}_{\max }$
- $\mathrm{C}_{\mathrm{avg}}=\frac{\mathrm{C}(\mathrm{q})}{\mathrm{q}}$ Average Cost function
- break even point(s), set $\mathbf{P}(\mathbf{q})=\mathbf{0}$ and solve for q

Marginal Analysis

 example part 1Find:

- C(q), Cost function
- $\mathbf{R (q)}$, Revenue function
- $\mathbf{P (q)}$, Profit function
- $\mathbf{q}_{\text {max }}$ production level to maximize profit
- $\mathbf{p}_{\text {max }}$ the price to charge for each unit to maximize profit
- maximum profit $\mathbf{P}_{\max }$
- $\mathrm{C}_{\text {avg }}=\frac{\mathrm{C}(\mathrm{q})}{\mathrm{q}}$ Average Cost function
- break even point(s), set $\mathbf{P}(\mathbf{q})=\mathbf{0}$ and solve for \mathbf{q}

Marginal Analysis

 example part 1Find:

- C(q), Cost function
- $\mathbf{R (q)}$, Revenue function
- $\mathbf{P (q)}$, Profit function
- $\mathbf{q}_{\text {max }}$ production level to maximize profit
- $\mathbf{p}_{\text {max }}$ the price to charge for each unit to maximize profit
- maximum profit $\mathbf{P}_{\text {max }}$
- $\mathrm{C}_{\text {avg }}=\frac{\mathrm{C}(\mathrm{q})}{\mathrm{q}}$ Average Cost function
- break even point(s), set $P(q)=0$ and solve for q

Marginal Analysis

 example part 1Find:

- C(q), Cost function
- $\mathbf{R (q)}$, Revenue function
- $\mathbf{P (q)}$, Profit function
- $\mathbf{q}_{\text {max }}$ production level to maximize profit
- $\mathbf{p}_{\text {max }}$ the price to charge for each unit to maximize profit
- maximum profit $\mathbf{P}_{\text {max }}$
- $\mathbf{C}_{\text {avg }}=\frac{\mathbf{C}(\mathbf{q})}{\mathbf{q}}$ Average Cost function
- break even point(s), set $\mathbf{P}(\mathbf{q})=\mathbf{0}$ and solve for \mathbf{q}

Marginal Analysis

 example part 1- There are two standard ways to approach the problem of finding $\mathbf{q}_{\text {max }}$
1st solve $M R=M C$ i.e. set $R^{\prime}(q)=C^{\prime}(q)$ and solve for $q_{\text {max }}$
Using this method you never need to actually find the profit
function. Sometimes this is useful.

Marginal Analysis

example part 1

- There are two standard ways to approach the problem of finding $\mathbf{q}_{\text {max }}$
1st solve $\mathbf{M R}=\mathbf{M C}$ i.e. set $R^{\prime}(q)=C^{\prime}(q)$ and solve for $q_{\text {max }}$
Using this method you never need to actually find the profit
function. Sometimes this is useful.

Marginal Analysis

 example part 1- There are two standard ways to approach the problem of finding $\mathbf{q}_{\text {max }}$
1st solve $\mathbf{M R}=\mathbf{M C}$ i.e. set $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$ and solve for $\mathbf{q}_{\text {max }}$.
Using this method you never need to actually find the profit function. Sometimes this is useful.

Marginal Analysis

 example part 1- There are two standard ways to approach the problem of finding $\mathbf{q}_{\text {max }}$
1st solve $\mathbf{M R}=\mathbf{M C}$ i.e. set $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$ and solve for $\mathbf{q}_{\text {max }}$. Using this method you never need to actually find the profit function. Sometimes this is useful.

Marginal Analysis

 example part 1- There are two standard ways to approach the problem of finding $\mathbf{q}_{\text {max }}$
1st solve $\mathbf{M R}=\mathbf{M C}$ i.e. set $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$ and solve for $\mathbf{q}_{\text {max }}$. Using this method you never need to actually find the profit function. Sometimes this is useful.
2nd solve MP $=0$,

Marginal Analysis

 example part 1- There are two standard ways to approach the problem of finding $\mathbf{q}_{\text {max }}$
1st solve $\mathbf{M R}=\mathbf{M C}$ i.e. set $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$ and solve for $\mathbf{q}_{\text {max }}$. Using this method you never need to actually find the profit function. Sometimes this is useful.

```
2nd solve MP = 0,
(q) = 0 and solve for q}\mp@subsup{\textrm{q}}{\operatorname{max}}{\mathrm{ . Here}
```

you must first find the profit function and it's derivative.

Marginal Analysis

 example part 1- There are two standard ways to approach the problem of finding $\mathbf{q}_{\text {max }}$
1st solve $\mathbf{M R}=\mathbf{M C}$ i.e. set $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$ and solve for $\mathbf{q}_{\text {max }}$. Using this method you never need to actually find the profit function. Sometimes this is useful.
2nd solve $\mathbf{M P}=\mathbf{0}$, i.e. set $\mathbf{P}^{\prime}(\mathbf{q})=\mathbf{0}$ and solve for $\mathbf{q}_{\text {max }}$.
you must first find the profit function and it's derivative.

Marginal Analysis example part 1

- There are two standard ways to approach the problem of finding $\mathbf{q}_{\text {max }}$
1st solve $\mathbf{M R}=\mathbf{M C}$ i.e. set $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$ and solve for $\mathbf{q}_{\text {max }}$. Using this method you never need to actually find the profit function. Sometimes this is useful.
2nd solve $\mathbf{M P}=\mathbf{0}$, i.e. set $\mathbf{P}^{\prime}(\mathbf{q})=\mathbf{0}$ and solve for $\mathbf{q}_{\text {max }}$. Here you must first find the profit function and it's derivative.

Marginal Analysis

 example part 1- There are two standard ways to approach the problem of finding $\mathbf{q}_{\text {max }}$
1st solve $\mathbf{M R}=\mathbf{M C}$ i.e. set $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$ and solve for $\mathbf{q}_{\text {max }}$. Using this method you never need to actually find the profit function. Sometimes this is useful.
2nd solve $\mathbf{M P}=\mathbf{0}$, i.e. set $\mathbf{P}^{\prime}(\mathbf{q})=\mathbf{0}$ and solve for $\mathbf{q}_{\text {max }}$. Here you must first find the profit function and it's derivative.
- This should be obvious from the graph:

Marginal Analysis

Cost Function

Cost Function:

- cost $=$ fixed cost + variable cost
- for this problem assume fixed cost is zero.
- variable cost $=$ cost per unit times number of units
- $C(q)=6 q$, Cost Function

Marginal Analysis

Cost Function

Cost Function:

- cost $=$ fixed cost + variable cost
- for this problem assume fixed cost is zero.
- variable cost $=$ cost per unit times number of units
- $C(q)=6 q$, Cost Function

Marginal Analysis

Cost Function

Cost Function:

- cost $=$ fixed cost + variable cost
- for this problem assume fixed cost is zero.
- variable cost $=$ cost per unit times number of units
- $C(q)=6 q$, Cost Function

Marginal Analysis

Cost Function:

- cost $=$ fixed cost + variable cost
- for this problem assume fixed cost is zero.
- variable cost $=$ cost per unit times number of units
- $C(q)=6 q$, Cost Function

Marginal Analysis

Revenue Function

- Revenue $=($ income from each unit sold $) \cdot($ number units sold $)$
- $R(q, p)=p \cdot q$,
- Use the demand relation to convert \mathbf{p} to a function of \mathbf{q},
- Demand Relation: $\mathbf{q}=100-2 p$
- solve for p as a function of q

Marginal Analysis

Revenue Function

- Revenue $=$ (income from each unit sold).(number units sold)
- $R(q, p)=p \cdot q$,
- Use the demand relation to convert \mathbf{p} to a function of \mathbf{q},
- Demand Relation: $\mathbf{q}=100-\mathbf{2 p}$
- solve for p as a function of q

Marginal Analysis

Revenue Function

- Revenue $=($ income from each unit sold $) \cdot($ number units sold $)$
- $\mathbf{R}(\mathbf{q}, \mathbf{p})=\mathbf{p} \cdot \mathbf{q}$,
- This is a function of both \mathbf{q} and \mathbf{p}. Need Revenue as a function of \mathbf{q} only.
- Use the demand relation to convert \mathbf{p} to a function of \mathbf{q},
- Demand Relation: $q=100-2 p$
- solve for \mathbf{p} as a function of \mathbf{q}

Marginal Analysis

Revenue Function

- Revenue $=$ (income from each unit sold) $\cdot($ number units sold $)$
- $\mathbf{R}(\mathbf{q}, \mathbf{p})=\mathbf{p} \cdot \mathbf{q}$,
- This is a function of both \mathbf{q} and \mathbf{p}. Need Revenue as a function of \mathbf{q} only.
- Use the demand relation to convert \mathbf{p} to a function of \mathbf{q},
- Demand Relation: $q=100-2 p$
- solve for \mathbf{p} as a function of \mathbf{q}

Marginal Analysis

Revenue Function

- Revenue $=$ (income from each unit sold) $\cdot($ number units sold $)$
- $\mathbf{R}(\mathbf{q}, \mathbf{p})=\mathbf{p} \cdot \mathbf{q}$,
- This is a function of both \mathbf{q} and \mathbf{p}. Need Revenue as a function of \mathbf{q} only.
- Use the demand relation to convert \mathbf{p} to a function of \mathbf{q},
- Demand Relation: $\mathbf{q}=100-2 \mathbf{p}$
- solve for p as a function of q

Marginal Analysis

Revenue Function

- Revenue $=$ (income from each unit sold) $\cdot($ number units sold $)$
- $\mathbf{R}(\mathbf{q}, \mathbf{p})=\mathbf{p} \cdot \mathbf{q}$,
- This is a function of both \mathbf{q} and \mathbf{p}. Need Revenue as a function of \mathbf{q} only.
- Use the demand relation to convert \mathbf{p} to a function of \mathbf{q},
- Demand Relation: $\mathbf{q}=100$ - 2p
- solve for \mathbf{p} as a function of \mathbf{q}

Marginal Analysis

Revenue Function

- Revenue $=$ (income from each unit sold) $\cdot($ number units sold $)$
- $\mathbf{R}(\mathbf{q}, \mathbf{p})=\mathbf{p} \cdot \mathbf{q}$,
- This is a function of both \mathbf{q} and \mathbf{p}. Need Revenue as a function of \mathbf{q} only.
- Use the demand relation to convert \mathbf{p} to a function of \mathbf{q},
- Demand Relation: $\mathbf{q}=100$ - $\mathbf{2 p}$
- solve for \mathbf{p} as a function of \mathbf{q}

Marginal Analysis

Revenue Function

- Revenue $=$ (income from each unit sold) $\cdot($ number units sold $)$
- $\mathbf{R}(\mathbf{q}, \mathbf{p})=\mathbf{p} \cdot \mathbf{q}$,
- This is a function of both \mathbf{q} and \mathbf{p}. Need Revenue as a function of \mathbf{q} only.
- Use the demand relation to convert \mathbf{p} to a function of \mathbf{q},
- Demand Relation: $\mathbf{q}=100-\mathbf{2 p}$
- solve for \mathbf{p} as a function of \mathbf{q}

$$
\begin{align*}
q & =100-2 p \tag{1}\\
2 p & =100-q \tag{2}\\
p & =50-\frac{1}{2} \cdot q \tag{3}
\end{align*}
$$

Marginal Analysis

Revenue Function

- Revenue $=$ (income from each unit sold) $\cdot($ number units sold $)$
- $\mathbf{R}(\mathbf{q}, \mathbf{p})=\mathbf{p} \cdot \mathbf{q}$,
- This is a function of both \mathbf{q} and \mathbf{p}. Need Revenue as a function of \mathbf{q} only.
- Use the demand relation to convert \mathbf{p} to a function of \mathbf{q},
- Demand Relation: $\mathbf{q}=100-\mathbf{2 p}$
- solve for \mathbf{p} as a function of \mathbf{q}

$$
\begin{align*}
q & =100-2 p \tag{1}\\
2 p & =100-q \tag{2}\\
p & =50-\frac{1}{2} \cdot q \tag{3}
\end{align*}
$$

- This gives the demand relation in the form $\mathbf{D}(\mathbf{q})=50-\frac{1}{2} \cdot \mathbf{q}$
- $R(q)=\left(50-\frac{1}{2} q\right) q=50 q-\frac{1}{2} q^{2}$, Revenue Function

Marginal Analysis

Revenue Function

- Revenue $=($ income from each unit sold $) \cdot($ number units sold $)$
- $\mathbf{R}(\mathbf{q}, \mathbf{p})=\mathbf{p} \cdot \mathbf{q}$,
- This is a function of both \mathbf{q} and \mathbf{p}. Need Revenue as a function of \mathbf{q} only.
- Use the demand relation to convert \mathbf{p} to a function of \mathbf{q},
- Demand Relation: $\mathbf{q}=100-\mathbf{2 p}$
- solve for \mathbf{p} as a function of \mathbf{q}

$$
\begin{align*}
q & =100-2 p \tag{1}\\
2 p & =100-q \tag{2}\\
p & =50-\frac{1}{2} \cdot q \tag{3}
\end{align*}
$$

- This gives the demand relation in the form $\mathbf{D}(\mathbf{q})=50-\frac{1}{2} \cdot \mathbf{q}$
- $R(q)=\left(50-\frac{1}{2} q\right) q=50 q-\frac{1}{2} q^{2}$, Revenue Function

Marginal Analysis

Profit:

- $P(q)=R(q)-C(q)$
- $P(q)=\left(50 q-\frac{1}{2} q^{2}\right)-(6 q)$
- $P(q)=44 q-\frac{1}{2} q^{2}$

Profit Function: $P(q)=44 q-\frac{1}{2} q^{2}$

Marginal Analysis

Profit:

- $P(q)=R(q)-C(q)$
- $P(q)=\left(50 q-\frac{1}{2} q^{2}\right)-(6 q)$
- $P(q)=44 q-\frac{1}{2} q^{2}$

Profit Function: $P(q)=44 q-\frac{1}{2} q^{2}$

Marginal Analysis

Profit:

- $P(q)=R(q)-C(q)$
- $P(q)=\left(50 q-\frac{1}{2} q^{2}\right)-(6 q)$
- $P(q)=44 q-\frac{1}{2} q^{2}$

Profit Function: $P(q)=44 q-\frac{1}{2} q^{2}$

Marginal Analysis

Profit:

- $P(q)=R(q)-C(q)$
- $P(q)=\left(50 q-\frac{1}{2} q^{2}\right)-(6 q)$
- $P(q)=44 q-\frac{1}{2} q^{2}$
- Profit Function: $P(q)=44 q-\frac{1}{2} q^{2}$

Marginal Analysis

To find $\mathbf{q}_{\text {max }}$ set $\mathbf{P}^{\prime}=\mathbf{0}$ and solve for \mathbf{q}

Marginal Analysis

To find $\mathbf{q}_{\text {max }}$ set $\mathbf{P}^{\prime}=\mathbf{0}$ and solve for \mathbf{q}

- $P(q)=44 q-\frac{1}{2} q^{2}$
- solve MP $=0$
- solve $\mathbf{P}^{\prime}=44-q=0$
- gives $\mathbf{q}_{\text {max }}=44$ units.

Marginal Analysis

To find $\mathbf{q}_{\text {max }}$ set $\mathbf{P}^{\prime}=\mathbf{0}$ and solve for \mathbf{q}

- $P(q)=44 q-\frac{1}{2} q^{2}$
- solve MP $=0$
- solve $\mathrm{P}^{\prime}=44-\mathrm{q}=0$
- gives $\mathrm{q}_{\max }=44$ units.

Marginal Analysis

To find $\mathbf{q}_{\text {max }}$ set $\mathbf{P}^{\prime}=\mathbf{0}$ and solve for \mathbf{q}

- $P(q)=44 q-\frac{1}{2} q^{2}$
- solve MP $=0$
- solve $\mathrm{P}^{\prime}=44-\mathrm{q}=0$
- gives $q_{\text {max }}=44$ units.

Marginal Analysis

To find $\mathbf{q}_{\text {max }}$ set $\mathbf{P}^{\prime}=\mathbf{0}$ and solve for \mathbf{q}

- $P(q)=44 q-\frac{1}{2} q^{2}$
- solve MP $=0$
- solve $\mathbf{P}^{\prime}=44-q=0$
- gives $\mathrm{q}_{\max }=44$ units.

Marginal Analysis

 find $\mathbf{q}_{\text {max }}$To find $\mathbf{q}_{\text {max }}$ set $\mathbf{P}^{\prime}=\mathbf{0}$ and solve for \mathbf{q}

- $P(q)=44 q-\frac{1}{2} q^{2}$
- solve MP $=0$
- solve $\mathbf{P}^{\prime}=44-q=0$
- gives $\mathbf{q}_{\max }=44$ units.
made and sold to maximize profit.

Marginal Analysis

 find $\mathbf{q}_{\text {max }}$To find $\mathbf{q}_{\text {max }}$ set $\mathbf{P}^{\prime}=\mathbf{0}$ and solve for \mathbf{q}

- $P(q)=44 q-\frac{1}{2} q^{2}$
- solve MP $=0$
- solve $\mathbf{P}^{\prime}=44-q=0$
- gives $\mathbf{q}_{\max }=44$ units. This is the quantity that must be made and sold to maximize profit.
- use the demand relation to find $\mathbf{p}_{\max }$. (any form will do).
- $\mathrm{p}_{\max }=50-\frac{1}{2} \cdot 44=\$ 28$ per unit.

Marginal Analysis

To find $\mathbf{q}_{\text {max }}$ set $\mathbf{P}^{\prime}=\mathbf{0}$ and solve for \mathbf{q}

- $P(q)=44 q-\frac{1}{2} q^{2}$
- solve MP $=0$
- solve $\mathbf{P}^{\prime}=44-q=0$
- gives $\mathbf{q}_{\text {max }}=44$ units. This is the quantity that must be made and sold to maximize profit.
- use the demand relation to find $\mathbf{p}_{\text {max }}$. (any form will do).
- $\mathrm{p}_{\max }=50-\frac{1}{2} \cdot 44=\$ 28$ per unit.

Marginal Analysis

To find $\mathbf{q}_{\text {max }}$ set $\mathbf{P}^{\prime}=\mathbf{0}$ and solve for \mathbf{q}

- $P(q)=44 q-\frac{1}{2} q^{2}$
- solve MP $=0$
- solve $\mathbf{P}^{\prime}=44-q=0$
- gives $\mathbf{q}_{\text {max }}=44$ units. This is the quantity that must be made and sold to maximize profit.
- use the demand relation to find $\mathbf{p}_{\text {max }}$. (any form will do).
- $\mathbf{p}_{\text {max }}=\mathbf{5 0}-\frac{\mathbf{1}}{\mathbf{2}} \cdot \mathbf{4 4}=\mathbf{\$ 2 8}$ per unit. This is what you should

Marginal Analysis

To find $\mathbf{q}_{\text {max }}$ set $\mathbf{P}^{\prime}=\mathbf{0}$ and solve for \mathbf{q}

- $P(q)=44 q-\frac{1}{2} q^{2}$
- solve MP $=0$
- solve $\mathbf{P}^{\prime}=44-q=0$
- gives $\mathbf{q}_{\text {max }}=44$ units. This is the quantity that must be made and sold to maximize profit.
- use the demand relation to find $\mathbf{p}_{\text {max }}$. (any form will do).
- $\mathbf{p}_{\text {max }}=\mathbf{5 0}-\frac{\mathbf{1}}{\mathbf{2}} \cdot \mathbf{4 4}=\mathbf{\$ 2 8}$ per unit. This is what you should charge for each item to maximize the profit.
- Maximum profit

Marginal Analysis

To find $\mathbf{q}_{\text {max }}$ set $\mathbf{P}^{\prime}=\mathbf{0}$ and solve for \mathbf{q}

- $P(q)=44 q-\frac{1}{2} q^{2}$
- solve MP $=0$
- solve $\mathbf{P}^{\prime}=44-q=0$
- gives $\mathbf{q}_{\text {max }}=44$ units. This is the quantity that must be made and sold to maximize profit.
- use the demand relation to find $\mathbf{p}_{\text {max }}$. (any form will do).
- $\mathbf{p}_{\text {max }}=\mathbf{5 0}-\frac{\mathbf{1}}{\mathbf{2}} \cdot \mathbf{4 4}=\mathbf{\$ 2 8}$ per unit. This is what you should charge for each item to maximize the profit.
- Maximum profit

Marginal Analysis

To find $\mathbf{q}_{\text {max }}$ set $\mathbf{P}^{\prime}=\mathbf{0}$ and solve for \mathbf{q}

- $P(q)=44 q-\frac{1}{2} q^{2}$
- solve MP $=0$
- solve $\mathbf{P}^{\prime}=44-q=0$
- gives $\mathbf{q}_{\text {max }}=44$ units. This is the quantity that must be made and sold to maximize profit.
- use the demand relation to find $\mathbf{p}_{\text {max }}$. (any form will do).
- $\mathbf{p}_{\text {max }}=\mathbf{5 0}-\frac{\mathbf{1}}{\mathbf{2}} \cdot \mathbf{4 4}=\mathbf{\$ 2 8}$ per unit. This is what you should charge for each item to maximize the profit.
- Maximum profit

$$
P_{\max }=P\left(q_{\max }\right)=P(28)=44(28)-\frac{1}{2}(28)^{2}=\$ 968.00
$$

Marginal Analysis

To find $\mathbf{q}_{\text {max }}$ set $\mathbf{P}^{\prime}=\mathbf{0}$ and solve for \mathbf{q}

- $P(q)=44 q-\frac{1}{2} q^{2}$
- solve MP $=0$
- solve $\mathbf{P}^{\prime}=44-q=0$
- gives $\mathbf{q}_{\text {max }}=44$ units. This is the quantity that must be made and sold to maximize profit.
- use the demand relation to find $\mathbf{p}_{\text {max }}$. (any form will do).
- $\mathbf{p}_{\text {max }}=\mathbf{5 0}-\frac{\mathbf{1}}{\mathbf{2}} \cdot \mathbf{4 4}=\mathbf{\$ 2 8}$ per unit. This is what you should charge for each item to maximize the profit.
- Maximum profit

$$
P_{\max }=P\left(q_{\max }\right)=P(28)=44(28)-\frac{1}{2}(28)^{2}=\$ 968.00
$$

Marginal Analysis

 alternate method to find $\mathbf{q}_{\max }$
Alternate method to find $\mathbf{q}_{\text {max }}$

Marginal Analysis

 alternate method to find $\mathbf{q}_{\text {max }}$
Alternate method to find $\mathbf{q}_{\text {max }}$

- To find $\mathbf{q}_{\text {max }}$ set $M R=M C$,

Marginal Analysis

alternate method to find $\mathbf{q}_{\text {max }}$

Alternate method to find $\mathbf{q}_{\text {max }}$

- To find $\mathbf{q}_{\text {max }}$ set $\mathbf{M R}=\mathbf{M C}$, i.e. set $\mathbb{R}^{\prime}(q)=C^{\prime}(q)$ and

Marginal Analysis

alternate method to find $\mathbf{q}_{\text {max }}$

Alternate method to find $\mathbf{q}_{\text {max }}$

- To find $\mathbf{q}_{\text {max }}$ set $\mathbf{M R}=\mathbf{M C}$, i.e. set $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$ and solve for \mathbf{q}

Marginal Analysis

 alternate method to find $\mathbf{q}_{\text {max }}$
Alternate method to find $\mathbf{q}_{\text {max }}$

- To find $\mathbf{q}_{\text {max }}$ set $\mathbf{M R}=\mathbf{M C}$, i.e. set $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$ and solve for \mathbf{q}
- $C(q)=6 q$
- $R(q)=50 q-\frac{1}{2} q^{2}$
- $M C=C^{\prime}(q)=6$
- $M R=R^{\prime}(q)=50-q$
- solve MR) $=$ MC
- solve $\mathbf{R}^{\prime}(\mathbf{q})=C^{\prime}(q)$
- solve $50-\mathrm{q}=6$
- gives $\mathrm{q}_{\max }=44$
- $P_{\max }=R\left(q_{\max }\right)-C\left(q_{\max }\right)=50(44)-\frac{1}{2}(44)^{2}=\$ 968.00$
- This was easier and there was no need to find the profit function $\mathrm{P}(\mathrm{q})$

Marginal Analysis

 alternate method to find $\mathbf{q}_{\text {max }}$
Alternate method to find $\mathbf{q}_{\text {max }}$

- To find $\mathbf{q}_{\text {max }}$ set $\mathbf{M R}=\mathbf{M C}$, i.e. set $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$ and solve for \mathbf{q}
- $\mathbf{C}(\mathbf{q})=\mathbf{6 q}$
- $R(q)=50 q-\frac{1}{2} q^{2}$
- $M C=C^{\prime}(q)=6$

- solve MR) $=$ MC
- solve $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$
- solve $50-\mathrm{q}=6$
- gives $\mathrm{q}_{\max }=44$
- $\mathbf{P}_{\max }=\mathbf{R}\left(\mathbf{q}_{\max }\right)-C\left(q_{\max }\right)=50(44)-\frac{1}{2}(44)^{2}=\$ 968.00$
- This was easier and there was no need to find the profit function $P(q)$

Marginal Analysis

 alternate method to find $\mathbf{q}_{\text {max }}$
Alternate method to find $\mathbf{q}_{\text {max }}$

- To find $\mathbf{q}_{\text {max }}$ set $\mathbf{M R}=\mathbf{M C}$, i.e. set $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$ and solve for \mathbf{q}
- $\mathbf{C}(\mathbf{q})=\mathbf{6 q}$
- $R(q)=50 q-\frac{1}{2} q^{2}$
- $M C=C^{\prime}(q)=6$
- $M R=R^{\prime}(q)=50-q$
- solve MR) $=$ MC
- solve $\mathbf{R}^{\prime}(\mathbf{q})=C^{\prime}(\mathbf{q})$
- solve $50-q=6$
- gives $\mathrm{q}_{\max }=44$
- $\mathbf{P}_{\max }=\mathbf{R}\left(\mathbf{q}_{\max }\right)-C\left(\mathrm{q}_{\max }\right)=50(44)-\frac{1}{2}(44)^{2}=\$ 968.00$
- This was easier and there was no need to find the profit function $\mathrm{P}(\mathrm{q})$

Marginal Analysis

 alternate method to find $\mathbf{q}_{\text {max }}$
Alternate method to find $\mathbf{q}_{\text {max }}$

- To find $\mathbf{q}_{\text {max }}$ set $\mathbf{M R}=\mathbf{M C}$, i.e. set $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$ and solve for \mathbf{q}
- $\mathbf{C}(\mathbf{q})=\mathbf{6 q}$
- $R(q)=50 q-\frac{1}{2} q^{2}$
- $M C=C^{\prime}(q)=6$
- $M R=R^{\prime}(q)=50-q$
- solve MR) = MC
- solve $\mathbf{R}^{\prime}(q)=C^{\prime}(q)$
- solve $50-\mathrm{q}=6$
- gives $\mathrm{q}_{\max }=44$
- $P_{\max }=R\left(q_{\max }\right)-C\left(q_{\max }\right)=50(44)-\frac{1}{2}(44)^{2}=\$ 968.00$
- This was easier and there was no need to find the profit function $P(q)$

Marginal Analysis

 alternate method to find $\mathbf{q}_{\text {max }}$
Alternate method to find $\mathbf{q}_{\text {max }}$

- To find $\mathbf{q}_{\text {max }}$ set $\mathbf{M R}=\mathbf{M C}$, i.e. set $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$ and solve for \mathbf{q}
- $\mathbf{C}(\mathbf{q})=\mathbf{6 q}$
- $R(q)=50 q-\frac{1}{2} q^{2}$
- $M C=C^{\prime}(q)=6$
- $M R=R^{\prime}(q)=50-q$
- solve MR) $=$ MC
- solve $\mathrm{R}^{\prime}(\mathrm{q})=\mathrm{C}^{\prime}(\mathrm{q})$
- solve $50-q=6$
- gives $\mathbf{a}_{\max }=44$
- $\mathrm{P}_{\max }=\mathrm{R}\left(\mathrm{q}_{\max }\right)-\mathrm{C}\left(\mathrm{q}_{\max }\right)=50(44)-\frac{1}{2}(44)^{2}=\$ 968.00$
- This was easier and there was no need to find the profit function $\mathbf{P (q)}$

Marginal Analysis

 alternate method to find $\mathbf{q}_{\text {max }}$
Alternate method to find $\mathbf{q}_{\text {max }}$

- To find $\mathbf{q}_{\text {max }}$ set $\mathbf{M R}=\mathbf{M C}$, i.e. set $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$ and solve for \mathbf{q}
- $\mathbf{C}(\mathbf{q})=\mathbf{6 q}$
- $R(q)=50 q-\frac{1}{2} q^{2}$
- $M C=C^{\prime}(q)=6$
- $M R=R^{\prime}(q)=50-q$
- solve MR) $=$ MC
- solve $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$
- solve $50-\mathrm{q}=6$
- gives $\mathrm{q}_{\max }=44$
- $\mathbf{P}_{\max }=\mathbf{R}\left(\mathbf{q}_{\max }\right)-C\left(q_{\max }\right)=50(44)-\frac{1}{2}(44)^{2}=\$ 968.00$
- This was easier and there was no need to find the profit function $P(q)$

Marginal Analysis

 alternate method to find $\mathbf{q}_{\text {max }}$
Alternate method to find $\mathbf{q}_{\text {max }}$

- To find $\mathbf{q}_{\text {max }}$ set $\mathbf{M R}=\mathbf{M C}$, i.e. set $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$ and solve for \mathbf{q}
- $\mathbf{C}(\mathbf{q})=\mathbf{6 q}$
- $R(q)=50 q-\frac{1}{2} q^{2}$
- $M C=C^{\prime}(q)=6$
- $M R=R^{\prime}(q)=50-q$
- solve MR) $=$ MC
- solve $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$
- solve 50 - $\mathbf{q}=\mathbf{6}$
- gives $q_{\max }=44$
- $P_{\max }=R\left(q_{\max }\right)-C\left(q_{\max }\right)=50(44)-\frac{1}{2}(44)^{2}=\$ 968.00$
- This was easier and there was no need to find the profit function $P(q)$

Marginal Analysis

 alternate method to find $\mathbf{q}_{\text {max }}$
Alternate method to find $\mathbf{q}_{\text {max }}$

- To find $\mathbf{q}_{\text {max }}$ set $\mathbf{M R}=\mathbf{M C}$, i.e. set $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$ and solve for \mathbf{q}
- $\mathbf{C}(\mathbf{q})=\mathbf{6 q}$
- $R(q)=50 q-\frac{1}{2} q^{2}$
- $M C=C^{\prime}(q)=6$
- $M R=R^{\prime}(q)=50-q$
- solve MR) $=$ MC
- solve $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$
- solve $50-\mathbf{q}=\mathbf{6}$
- gives $q_{\text {max }}=44$
- $\mathrm{P}_{\max }=\mathrm{R}\left(\mathrm{q}_{\max }\right)-\mathrm{C}\left(\mathrm{q}_{\max }\right)=50(44)-\frac{1}{2}(44)^{2}=\$ 968.00$
- This was easier and there was no need to find the profit function $\mathbf{P}(\mathbf{q})$

Marginal Analysis

 alternate method to find $\mathbf{q}_{\text {max }}$
Alternate method to find $\mathbf{q}_{\text {max }}$

- To find $\mathbf{q}_{\text {max }}$ set $\mathbf{M R}=\mathbf{M C}$, i.e. set $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$ and solve for \mathbf{q}
- $\mathbf{C}(\mathbf{q})=\mathbf{6 q}$
- $R(q)=50 q-\frac{1}{2} q^{2}$
- $M C=C^{\prime}(q)=6$
- $M R=R^{\prime}(q)=50-q$
- solve MR) $=$ MC
- solve $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$
- solve $\mathbf{5 0} \mathbf{- q}=\mathbf{6}$
- gives $\mathbf{q}_{\max }=44$
- $P_{\text {max }}=R\left(q_{\max }\right)-C\left(q_{\max }\right)=50(44)-\frac{1}{2}(44)_{\Lambda}^{v}=\$ 968.00$
- This was easier and there was no need to find the profit function $P(q)$

Marginal Analysis

alternate method to find $\mathbf{q}_{\text {max }}$
Alternate method to find $\mathbf{q}_{\text {max }}$

- To find $\mathbf{q}_{\text {max }}$ set $\mathbf{M R}=\mathbf{M C}$, i.e. set $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$ and solve for \mathbf{q}
- $\mathbf{C}(\mathbf{q})=\mathbf{6 q}$
- $R(q)=50 q-\frac{1}{2} q^{2}$
- $M C=C^{\prime}(q)=6$
- $M R=R^{\prime}(q)=50-q$
- solve MR) $=$ MC
- solve $\mathbf{R}^{\prime}(\mathbf{q})=\mathbf{C}^{\prime}(\mathbf{q})$
- solve $\mathbf{5 0} \mathbf{- q}=\mathbf{6}$
- gives $\mathbf{q}_{\max }=44$
- $P_{\max }=R\left(q_{\max }\right)-C\left(q_{\max }\right)=50(44)-\frac{1}{2}(44)_{\Lambda}^{26}=\$ 968.00$
- This was easier and there was no need to find the profit function $\mathbf{P}(\mathbf{q})$.

