Math 504 Set Theory I Problem Set 5

Due Wednesday March 5

1) (ZFC) a) Show that $H(\aleph_1) \models \text{ZFC}-P + \omega$ is the largest cardinal.

b)^{\dagger} Use a) and Gödel's Second Incompleteness Theorem to show that (assuming ZFC is consistent)

$$\operatorname{ZFC} \not\vdash \operatorname{Con}(\operatorname{ZFC} - \operatorname{P}) \to \operatorname{Con}(\operatorname{ZFC}).$$

2) We say that (M_α : α ∈ On) is a smooth hierarchy if
i) M_α ⊆ M_β for all α < β, and
ii) M_α = ⋃_{β<α} M_β for α a limit ordinal.

Suppose $(M_{\alpha} : \alpha \in On)$ is a smooth hierarchy and $M = \bigcup_{\alpha \in On} M_{\alpha}$.

Suppose $X \subseteq M$ and $\phi_1(v, w_1, \ldots, w_n), \ldots, \phi_k(v, w_1, \ldots, w_n)$ are formulas. Prove that there is an ordinal α such that $X \subseteq M_{\alpha}$ and

$$M \models \exists v \ \phi_i(v, \bar{a}) \Rightarrow M_\alpha \models \exists v \ \phi_i(v, \bar{a})$$

for all $a_1, \ldots, a_n \in M_\alpha$ and $i = 1, \ldots, k$.

Convince yourself (but don't hand in) that this is enough to prove the following version of Reflection: for any $a \subseteq M$ and any $\phi(\bar{v})$ there is α such that $a \subseteq M_{\alpha}$ and

$$M \models \phi(b) \Leftrightarrow M_{\alpha} \models \phi(b)$$

for all $\bar{b} \in M_{\alpha}$.

3) a) Prove that $|\text{Def}(X)| \leq \max(|X|, \aleph_0)$. b) Prove that $|\mathbb{L}_{\alpha}| = |\alpha|$ for all $\alpha > \omega$.

4) Suppose κ is a weakly inaccessible cardinal. Prove that

 $\mathbb{L} \models \kappa$ is a weakly inaccessible cardinal.