Math 504 Set Theory I

Problem Set 9

Due Wednesday May 6

Do three of the following problems.

1) Suppose \mathcal{M} is a countable transitive model of ZFC, such that

 $\mathcal{M} \models \kappa$ and λ are infinite cardinals

Let $\mathbb{P} = \operatorname{Fn}(\kappa, \lambda)$ and let $G \subset \mathbb{P}$ be an \mathcal{M} -generic filter.

a) Prove that \mathbb{P} has λ^+ -cc. Conclude that all cardinal $\mu > \lambda$ remain cardinals in $\mathcal{M}[G]$.

b) For $\alpha < \lambda$ show $D_{\alpha} = \{p : \exists n \in \omega \ p(n) = \alpha\}$ is dense and conclude that $\mathcal{M}[G] \models \lambda$ is countable.

2.5) Suppose \mathcal{M} is a countable transitive model of ZFC with $2^{\aleph_0} = \kappa > \aleph_1$. Let $\mathbb{P} = \operatorname{Fn}(\omega_1, 2, \omega_1)^{\mathcal{M}}$. Let $G \subset \mathbb{P}$ be an \mathcal{M} -generic filter.

a) Prove that $\mathcal{M}[G] \models \text{CH}$. [Hint: For $r : \omega \to 2$ with $r \in \mathcal{M}$, consider $D_r = \{p \in \mathbb{P} : \exists \alpha \forall n \in \omega \ p(\alpha + n) = r(n)\}.$]

This give a proof that $\operatorname{Con}(\operatorname{ZFC}) \to \operatorname{Con}(\operatorname{ZFC}+\operatorname{CH})$ that avoids \mathbb{L} . Even more is true. $\mathcal{M}[G] \models \Diamond$. (see Kunen VII 8.3)

b) Prove that all cardinals λ of \mathcal{M} with $\aleph_2^{\mathcal{M}} \leq \lambda \leq \kappa$ are collapsed to \aleph_1 in $\mathcal{M}[G]$.

4) Let \mathcal{M} be a countable transitive model of ZFC. Let $\mathbb{P} = Fn(\omega, 2)$ and let $G \subset \mathbb{P}$ be \mathcal{M} -generic and $g = \bigcup_{p \in G} p$. Recall that $2^{<\omega}$ is the set of all finite sequences of zeros and ones. We say

Recall that $2^{<\omega}$ is the set of all finite sequences of zeros and ones. We say that $T \subseteq 2^{<\omega}$ is a *tree* if whenever $\sigma \in T$ and $\tau \subseteq \sigma$, then $\tau \in T$. If T is a tree then $[T] = \{f : \omega \to 2 : \forall n \ f | n \in T\}$ is the set of paths through T.

We say that a tree T is nowhere dense if for all $\sigma \in 2^{<\omega}$ there is $\tau \supset \sigma$ with $\tau \notin T$.

Prove that if $T_0, T_1, \ldots \in \mathcal{M}$ are nowhere dense trees, then $g \notin \bigcup_{n \in \omega} [T_n]$.

This is a proof that a Cohen real avoids all meager sets in \mathcal{M} and shows some relationship between forcing and the Baire Category Theorem. 5) Let \mathcal{M} be a countable transitive model of ZFC. Let $\mathbb{P} = \operatorname{Fn}(\omega, 2)$ and let $G \subset \mathbb{P}$ be \mathcal{M} -generic.

Let

$$G_0 = \{ p \in \mathbb{P} : \exists q \in G \ p(n) = q(2n) \}$$

and

$$G_1 = \{ p \in \mathbb{P} : \exists q \in G \ p(n) = q(2n+1) \}.$$

If $g = \bigcup_{p \in G} p$ and $g_i = \bigcup_{p \in G_i} p$, then $g_0(n) = g(2n)$ and $g_1(n) = g(2n+1)$.

a) Prove that G_0 is an \mathcal{M} -generic filter. [A similar argument would show that G_1 is \mathcal{M} -generic.]

b)[†] Prove that G_1 is an $\mathcal{M}[G_0]$ -generic filter. [Hint: Suppose $D \in \mathcal{M}[G_0]$ is a dense subset of \mathbb{P} . Let $\tau \in \mathcal{M}^{\mathbb{P}}$ such that $\tau_{G_0} = D$. Let $p \Vdash \tau$ is dense". Show that $\{q \in \mathbb{P} : \text{either the "even part" of } q \text{ is incompatible with } p \text{ or the "even part" of } q \text{ forces that the "odd part" of } q \text{ is in } \tau \}$ is dense.]

c) Prove that $\mathcal{M}[G] = \mathcal{M}[G_0][G_1].$

This shows that adding one Cohen real is the same as adding two independent Cohen reals.