MATH 531: PROBLEM SET 1

Due Friday, September 5

All rings are considered to be commutative, with unit, unless otherwise specified.

(1) Atiyah-MacDonald, Ch.1: 5; Ch. 4: 4, 5, 7.

(2) Let \(R \) be a ring. An element \(a \in R \) is nilpotent if there exists an integer \(n > 0 \) such that \(a^n = 0 \). The set of all nilpotent elements of \(R \), denoted \(\text{nil}(R) \), is called the nilradical of \(R \). Show that \(\text{nil}(R) \) is an ideal, and that it is equal to the intersection of the prime ideals of \(R \). Show that \(R/\text{nil}(R) \) has no nonzero nilpotent elements, i.e. it is a reduced ring.

(3) Let \(S \) be a multiplicative system in the ring \(R \). For an ideal \(I \) in \(R \), we define \(S^{-1}I := \{ \frac{x}{s} \mid x \in I, s \in S \} \). Denote by \(h \) the natural homomorphism \(R \to S^{-1}R \).

1. Show that \(S^{-1}I \) is an ideal, which is proper if and only if \(S \cap I = \emptyset \).
2. If \(J \subset S^{-1}R \) is an ideal and \(I = h^{-1}(J) \), then \(I \) is an ideal and \(S^{-1}I = J \).
3. If \(I \subset R \) is an ideal, then \(I \subset h^{-1}(S^{-1}I) \). If \(I \) is prime and disjoint from \(S \), this is an equality.
4. If \(I \) is prime and disjoint from \(S \), then \(S^{-1}I \) is prime in \(S^{-1}R \).
5. Show that there is a one-to-one correspondence between prime ideals \(P \subset R \) disjoint from \(S \) and prime ideals \(Q \subset S^{-1}R \) given by
 \[P \to S^{-1}P \text{ and } Q \to h^{-1}(Q). \]
 (Hint: use (2), (3) and (4)).

(4) Let \(R \) be a commutative ring. An \(R \) module is free of rank \(n \) if it is isomorphic to \(R^n \). Show the following:

1. If \(R^n \cong R^m \), then \(n = m \).
2. Let \(A = (a_{ij}) \) be an \(n \times m \) matrix over \(R \), of rank \(r \). If \(r < m \), then the column vectors of \(A \) are linearly dependent. Deduce from this an alternative proof of (1).
3. If \(R \) is a local ring, then any minimal set of generators of the module \(R^n \) is basis.

(5) Let \(M \) and \(N \) be finitely generated modules over a local ring \(R \). Show that \(M \otimes_R N = 0 \) if and only if either \(M \) or \(N \) is 0. Show that the result fails to hold if \(R \) is not local.

(6) Show that \(\text{Ass}(M) \) commutes with localization, i.e. if \(S \subset R \) is a multiplicative set, then
\[
\text{Ass}_{S^{-1}R}(S^{-1}M) = \{ P \cdot S^{-1}R \mid P \in \text{Ass}(M), P \cap S = \emptyset \}.
\]