MATH 531: PROBLEM SET 5

Due Friday, October 10

(1) Let $R \subset S$ be an integral extension of rings, Q a prime ideal in S and $P = Q \cap R$. Prove the following:

- (1) dim $R = \dim S$.
- (2) coht $P = \operatorname{coht} Q$.
- (3) ht $Q \leq \operatorname{ht} P$.
- (4) If R and S are domains, with R integrally closed, then ht Q = ht P.

(2) Let S = k[[X, Y, Z]] be the formal power series ring over a field k, and let R = S/I, where I = (XY, XZ).

- (1) Show that dim R = 2.
- (2) Consider the ideal $P = (\overline{Y}, \overline{Z})$ in R. Show that it is a prime ideal, with P = 0 and coht P = 1, hence $P + Coht P < \dim R$.

(3) Prove that if R is any commutative ring, then dim $R[X] \ge \dim R + 1$. If in addition R is Noetherian, then dim $R[X] = \dim R + 1$, hence dim $R[X_1, \ldots, X_n] = \dim R + n$. (Feel free to consult the various commutative algebra books.)

(4) Let $S = \bigoplus_{n \ge 0} S_n$ be a graded ring. Then S is Noetherian if and only if S_0 is Noetherian and S is a finitely generated S_0 -algebra.

(5) Let M be a finitely generated module over the Noetherian ring R, and let $P \in \text{Supp}(M)$. Show that $l_{R_P}(M_P) < \infty$ if and only if P is a minimal element in Ass(M).

(6) Compute in a direct way the Hilbert function of $S = k[X, Y, Z]/(X^2 + Y^2 + Z^2)$, where k is a field. (This is extended by a general procedure in the next exercise.)

(7) Let $F \in k[X_1, \ldots, X_n]$ be a homogeneous polynomial of degree d, where k is a field. Compute the Hilbert function of $S = k[X_1, \ldots, X_n]/(F)$.