Math 533-Real Analysis HW 1 DUE: Wednesday September 52007

Recall:

- For any two non-empty sets X and Y the set Y^{X} stands for the collection of all functions $f: X \rightarrow Y$ (note the order).
- If X is a non-empty set, then $\mathcal{P}(X)$ denotes the collection of all its subsets. $\mathcal{P}(X)$ is naturally identified with $\{0,1\}^{X}$.
- The cardinality of \mathbb{N} is denoted by the Hebrew \aleph_{0}, the cardinality of the reals \mathbb{R} by \aleph
- The latter cardinality (of the reals) is also called the (cardinality of) continuum.
- $\aleph=2^{\aleph_{0}}$, or in other words $\operatorname{card}\left(\{0,1\}^{\mathbb{N}}\right)=\operatorname{card}(\mathbb{R})$.
- Cantor's "diagonal argument" proves that $\aleph_{0}<\aleph$, i.e the continuum is uncountable. More generally, for any set $X, \operatorname{card}(X)<\operatorname{card}(\mathcal{P}(X))$.

Questions

(1) For any three non-empty sets X, Y, Z construct a natural bijection between the sets $\left(Z^{Y}\right)^{X}$ and $Z^{(Y \times X)}$.
(2) Prove that $\operatorname{card}\left(\mathbb{R}^{\mathbb{N}}\right)=\operatorname{card}(\mathbb{R})=\aleph($ Hint: use problem 1$)$.
(3) Prove that the space $\mathcal{C}(\mathbb{R})$ of all continuous functions $\mathbb{R} \rightarrow \mathbb{R}$ has the cardinality of the continuum (Hint: a continuous function is determined by its values at rational points).
(4) Prove that the collection of all open subsets of \mathbb{R} has the cardinality of the continuum (Hint: think first about open intervals)

