Page 148

- 4) On any simply connected domain not containing the origin $f(z) \neq 0$ which means that log(z) is analytic. But $z^{\alpha} = e^{\alpha log(z)}$ is analytic as well as $z^z = e^{zlogz}$.
- 5) Any closed curve γ in the domain Ω that winds around 1 also winds around -1. Now we start with some point $z_0 \in \gamma$ and choose some value of $\theta_1 = arg(1-z)$ so that $(1-z_0) = r_1 e^{i\theta_1}$. Take a branch of

$$\sqrt{1-z_0} = r_1^{1/2} e^{i\theta_1/2}.$$

Now as we travel around γ ; as we come back to z_0 we add 2π to the argument of (1-z). The same thing happens to the argument of (1+z) and so the argument of the product changes by 4π . Now when we take square roots we divide the argument by 2 which means that as we move around γ and come back to z_0 the argument of $\sqrt{1-z^2}$ changes by 2π .

Now we compute

$$\int_{\gamma} \frac{1}{\sqrt{1-z^2}} dz.$$

By Cauchy's theorem we can assume γ is a very large circle and so acts as a small disc about infinity. this suggests a change of variables z = 1/w on the circle. From $dz = -dw/w^2$ we get the integral is

$$-\int_{|w|=\delta} \frac{dw}{w\sqrt{w^2-1}}.$$

Now $\sqrt{w^2-1}$ is analytic in a neighborhood of 0 and so we can compute the integral by the Cauchy integral formula which gives the integral to be $-2\pi i\sqrt{(-1)}=2\pi$.

page 154

- 1) Let $f(z) = 6z^3$ and $g(z) = z^7 2z^5 + 6z^3 z + 1$ Then $|f(z) g(z)| = |z^7 2z^5 z + 1| \le |z^7| + 2|z^5| + |z| + 1 = 5 < |f(z)| = |6z^6| = 6$ on the circle |z| = 1. Thus they have the same number of zeroes in side the circle and that is 3.
- 2) Let $f(z) = z^4$ and $g(z) = z^4 6z + 3$. On the circle of radius 2, we have $|f(z) g(z)| \le 6|z| + 3 = 15 < |f(z)| = 16$. Thus g(z) has the same number of zeroes as f(z) inside which is 4. Inside the circle of radius 1 we let f(z) = -6z. Now $|f(z) g(z)| = |z^4 + 3| \le |z^4| + 3$ which on the circle of radius 1 is 4 which is less than f(z) on the circle of radius 1. Thus g has 1 zero inside the circle of radius 1 and so g has 3 zeroes in the annulus.